Terroir 1996 banner
IVES 9 IVES Conference Series 9 Enological characters of thirty vines in four different zones of Tuscany

Enological characters of thirty vines in four different zones of Tuscany

Abstract

In the last few years the development of HPLC techniques together with multivariate statistical methods allowed to set methodics of large discriminant and classing efficacy in the study of wine-grapes.
The phenolic compounds (cynnamic acids and anthocyanidins) in thirty different wines grown in 4 different zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC.
The analytical data were statistical worked out by two analysis ACP and a linear discriminant analisys in order to discriminate the four zones, using Fisher linear function.
The stepwise technique, to choose variables, pointed out the delphinidin-g, the peonidin-g, the ratio of three/two-sostituited anthocyanines, the sum of cis and trans-cutaric acids, the caffeic acid and the ratio of caffeic acid and the sum of cutaric acids among the most important.
Then we worked out 6 comparisons between two zones and exactly AR/LU, AR/PI, AR/GR, LU/PI, LU/GR and PI/GR.
The environment discriminant threshold, the differences, the discriminant functions of vine-variety in every zone and the measure of discrimination errors were obtained.
Therefore a vinevariety-environment interaction is quite probable.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

A.Piracci, P.Storchi, P.Bucelli, F. Giannetti, V. Faviere

Istituto Sperimentale per l’Enologia ​Via di Vertine 1 ​53013 Gaiole in Chianti (SI)
Istituto Sperimentale per la Viticoltura – Arezzo

Contact the author

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Twenty-two shades of grey – An analysis of alcohol regulations in the Arab world

This article compares alcohol regulations across 22 Arab League member countries.

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Late season dehydration, bunch stem necrosis, sugar accumulation disorder and sunburn are various types of berry shrivel occurring in vineyards. The incidence of these types of shrivel, and the degree to which it occur are influenced by various factors in the vineyard. These factors include the presence of pests and diseases in the vineyard, genetic traits expressed in certain cultivars, as
well as climatic and environmental factors. The occurrence of berry shrivel in the vineyard could negatively impact the quality and quantity of the fruit produced.

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).