Terroir 1996 banner
IVES 9 IVES Conference Series 9 Enological characters of thirty vines in four different zones of Tuscany

Enological characters of thirty vines in four different zones of Tuscany

Abstract

In the last few years the development of HPLC techniques together with multivariate statistical methods allowed to set methodics of large discriminant and classing efficacy in the study of wine-grapes.
The phenolic compounds (cynnamic acids and anthocyanidins) in thirty different wines grown in 4 different zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC.
The analytical data were statistical worked out by two analysis ACP and a linear discriminant analisys in order to discriminate the four zones, using Fisher linear function.
The stepwise technique, to choose variables, pointed out the delphinidin-g, the peonidin-g, the ratio of three/two-sostituited anthocyanines, the sum of cis and trans-cutaric acids, the caffeic acid and the ratio of caffeic acid and the sum of cutaric acids among the most important.
Then we worked out 6 comparisons between two zones and exactly AR/LU, AR/PI, AR/GR, LU/PI, LU/GR and PI/GR.
The environment discriminant threshold, the differences, the discriminant functions of vine-variety in every zone and the measure of discrimination errors were obtained.
Therefore a vinevariety-environment interaction is quite probable.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

A.Piracci, P.Storchi, P.Bucelli, F. Giannetti, V. Faviere

Istituto Sperimentale per l’Enologia ​Via di Vertine 1 ​53013 Gaiole in Chianti (SI)
Istituto Sperimentale per la Viticoltura – Arezzo

Contact the author

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Chemistry and analysis of key volatile compounds of wine and their precursors in grape

A relatively small number of the many volatile substances of wine, often present at trace
concentrations, are considered as key volatile compounds. These compounds often exist in grapes
under poorly odoriferous or non volatile forms as aroma precursors.

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Dimethyl sulfide (DMS) is a low molecular weight sulfur compound produced in wine during aging by the chemical degradation of S-Methyl-L-methionine (SMM). Investigating the aromatic profile of Amarone commercial wines from different wineries, it was found that DMS presented a high variation in concentration across wine samples ranging from 2.88 to 64.34 μg/L, which potentially can

Toward an automatic way to identify red blotch infected vines from hyperspectral images acquired in the field

Vineyards are affected by different virus diseases, which can lower yield and affect the quality of grapes. Grapevine red blotch disease is one of them, and no curative solution exists. Once infected, a vine must be removed and replaced with a virus-free vine (aka roguing). Screening vineyards to look for symptoms can be time-consuming and needs well-trained experts. To improve this process, we conducted an experiment identifying infected vines using a hyperspectral camera in the field.

Enhancing grapevine transformation and regeneration: A novel approach using developmental regulators and BeYDV-mediated expression

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering crispr/cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate.

Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Aims: Forecasting the biomass allocation among source and sinks organs is crucial to better understand how grapevines control the distribution of acquired resources and has a great meaning in term of making decisions about agricultural practices in vineyards. Modelling plant growth and development is one of prediction approaches that play this role when it concerns growth rates in response to variation in environmental conditions