Terroir 1996 banner
IVES 9 IVES Conference Series 9 Enological characters of thirty vines in four different zones of Tuscany

Enological characters of thirty vines in four different zones of Tuscany

Abstract

In the last few years the development of HPLC techniques together with multivariate statistical methods allowed to set methodics of large discriminant and classing efficacy in the study of wine-grapes.
The phenolic compounds (cynnamic acids and anthocyanidins) in thirty different wines grown in 4 different zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC.
The analytical data were statistical worked out by two analysis ACP and a linear discriminant analisys in order to discriminate the four zones, using Fisher linear function.
The stepwise technique, to choose variables, pointed out the delphinidin-g, the peonidin-g, the ratio of three/two-sostituited anthocyanines, the sum of cis and trans-cutaric acids, the caffeic acid and the ratio of caffeic acid and the sum of cutaric acids among the most important.
Then we worked out 6 comparisons between two zones and exactly AR/LU, AR/PI, AR/GR, LU/PI, LU/GR and PI/GR.
The environment discriminant threshold, the differences, the discriminant functions of vine-variety in every zone and the measure of discrimination errors were obtained.
Therefore a vinevariety-environment interaction is quite probable.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

A.Piracci, P.Storchi, P.Bucelli, F. Giannetti, V. Faviere

Istituto Sperimentale per l’Enologia ​Via di Vertine 1 ​53013 Gaiole in Chianti (SI)
Istituto Sperimentale per la Viticoltura – Arezzo

Contact the author

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

In the face of climate change, new grapevine varieties will have to show an adaptive phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine.

Rară Neagră 2.0: prospecting, improving and safeguarding the biodiversity in an eastern european heritage grape variety

The Rară Neagră 2.0 project aims to restore and safeguard the intra-varietal diversity of the ancient Eastern European grape variety Rară Neagră through polyclonal selection and the establishment of a certified genetic conservatory.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Influence of precipitation on the phenolic and isotopic composition of Vitis Vinifera red wines

This study investigates how precipitation from November to February during each harvest year, influence the phenolic and isotopic profiles of red wines, particularly focusing on trans-resveratrol, total phenolic compounds, and carbon and oxygen isotopes (¹³C/¹²C and ¹⁸O/¹⁶O).