Terroir 1996 banner
IVES 9 IVES Conference Series 9 “Terroir” and “Great” zonation study regarding Istrian Malvasia, Porec Rosy Muscat and Momjan White Muscat (HR)

“Terroir” and “Great” zonation study regarding Istrian Malvasia, Porec Rosy Muscat and Momjan White Muscat (HR)

Abstract

In a so called “Great” zonation, “terroir” study is of great importance also in aim of the best exploiting. In the present paper are shown results from the research in Istria with the aim of individuating the influence of soil (terra rossa and flysch) and of altitude on quality of three important autochtone varieties: “Istrian Malvasia”, “Porec Rosy Muscat” and “Momjan White Muscat”. Final goal was to furnish important elements to vitivinicultural zonation enclosed in a wide context of regulatory plans: vitivinicultural, viticultural, agricultural and general plan of the area. On this purpose, vineyards in full maturity were selected in Porec (80 end 220 msl) and Motovun (50 end 185 msl)) for Istrian Malvasia, in Porec ( 50 msl), and Visnjan (250 msl) for Rosy Muscat, in Momjan (220 and 350 msl) and Porec (50 end 200) for Whit Muscat, growing on terra rossa and flysch. During maturation and harvesting were performed some enochemical parameters (sugars, total acids, pH) and quantitative parameters. After viniflcation chemical and organoleptic analysis of wines were performed. It was also determined the economic quality (QE) of vines. Finally, vines were estimated according to the so called CIMEC methodology considering not only organoleptic quality but also preference, price, cost and profit. On basis of quantitative, enochemical, organoleptic and economic results, some interesting indications came out on the influence of soil type and altitude on productive qualitative, quantitative and business aspects of studied viticultures, objects of zonation (“Great” zonation).

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Đ. Persuric (1), M. Staver ą, G. Cargnello (2)

(1) Institute for Agriculture and Tourism Porec (CROATIA)
(2) Istituto Sperimentale per la Viticoltura – Sezione di Tecniche Colturali Conegliano (TV) (ITALY)

Keywords

Terroir, great zonation, Istrian malvasia, Porec rosy muscat, Momjan white muscat, Istria, Croatia

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Influence of cell-cell contact on yeast interactions and exo-metabolome

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used.

Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Sforzato di Valtellina DOCG is a special reinforced red wine produced using withered Nebbiolo grapes. The withering process takes place in traditional rooms under natural environmental conditions; it starts immediately after the harvest and ends not before the 1st December of the same year. The process can be performed with different bunch placements that can influence the grapes features.The purpose of the study is to compare the effect on grape physico-chemical parameters for four withering bunch placement systems: hanged clusters (HC), plastic crates (CT), breathable mesh fabric on wooden frames panels (MF), and reed mats (RM). For all the systems studied, the withering length was two months at a temperature between 6 and 19 °C and a relative humidity of 41-88%.

Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

ulfur compounds in wine have been studied for several years due to their impact on wine flavour, but the role of polysulfides is a recent topic. Polysulfides in wine are formed when two sulfhydryl groups oxidize, especially in presence of elemental sulfur or metal catalysts from field treatment residues (Ugliano et al. 2011). These compounds are odourless, but can degrade during storage and affect the wine quality. The mechanism of their formation is still largely unknown but different chemical and biochemical pathways have been suggested. Disulfides from cysteine (Cys) and glutathione (GSH) have been revealed in model wines (Kreitman et al. 2016) and more recently also higher polymerized forms in real wines (Van Leeuwen et al. 2020). Volatile varietal thiols like 3-mercaptohexanol (3MH) and 4-mercaptopentanone (4MMP) – flavour compounds with tropical or fruity notes – could undergo similar reactions, also with Cys and GSH, subsequently losing their flavour property (fate). Even more concerning is the possible release of H2S from polysulfides during storage, leading to undesired off-flavours (Sarrazin et al. 2010).

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.