Terroir 1996 banner
IVES 9 IVES Conference Series 9 “Terroir” and “Great” zonation study regarding Istrian Malvasia, Porec Rosy Muscat and Momjan White Muscat (HR)

“Terroir” and “Great” zonation study regarding Istrian Malvasia, Porec Rosy Muscat and Momjan White Muscat (HR)

Abstract

In a so called “Great” zonation, “terroir” study is of great importance also in aim of the best exploiting. In the present paper are shown results from the research in Istria with the aim of individuating the influence of soil (terra rossa and flysch) and of altitude on quality of three important autochtone varieties: “Istrian Malvasia”, “Porec Rosy Muscat” and “Momjan White Muscat”. Final goal was to furnish important elements to vitivinicultural zonation enclosed in a wide context of regulatory plans: vitivinicultural, viticultural, agricultural and general plan of the area. On this purpose, vineyards in full maturity were selected in Porec (80 end 220 msl) and Motovun (50 end 185 msl)) for Istrian Malvasia, in Porec ( 50 msl), and Visnjan (250 msl) for Rosy Muscat, in Momjan (220 and 350 msl) and Porec (50 end 200) for Whit Muscat, growing on terra rossa and flysch. During maturation and harvesting were performed some enochemical parameters (sugars, total acids, pH) and quantitative parameters. After viniflcation chemical and organoleptic analysis of wines were performed. It was also determined the economic quality (QE) of vines. Finally, vines were estimated according to the so called CIMEC methodology considering not only organoleptic quality but also preference, price, cost and profit. On basis of quantitative, enochemical, organoleptic and economic results, some interesting indications came out on the influence of soil type and altitude on productive qualitative, quantitative and business aspects of studied viticultures, objects of zonation (“Great” zonation).

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Đ. Persuric (1), M. Staver ą, G. Cargnello (2)

(1) Institute for Agriculture and Tourism Porec (CROATIA)
(2) Istituto Sperimentale per la Viticoltura – Sezione di Tecniche Colturali Conegliano (TV) (ITALY)

Keywords

Terroir, great zonation, Istrian malvasia, Porec rosy muscat, Momjan white muscat, Istria, Croatia

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Effets des pratiques agro-viticoles sur l’activité biologique et la matière organique des sols : exemples en Champagne et en Bourgogne

The notion of terroir covers multiple components, from geology, pedology, geomorphology and climatology (Doledec, 1995), to aspects that are less well identified but which also intervene in the “typicality” of wines. This justifies the “zoning” approach (Moncomble and Panigaï, 1990) to define homogeneous areas, under the same agro-viticultural management and also identified at the product level (Morlat and Asselin, 1992).

Protein stabilization of white wines by stabilizing filtration: pilot studies

Protein stabilization is an important part of the winemaking process of white wines, and in this work we present the results of protein stabilization of different monovarietal wines (Xarel.lo, Chardonnay, and Muscat) by a continuous stabilizing filtration process using a column packed with zirconium oxide operating in a continuous regime in a closed loop at pilot scale.

Characterization of a strain of Lachancea thermotolerans, microorganism of choice when facing the climatic challenges of the wine sector

Current climatic challenges in the wine sector require innovative solutions to maintain the quality of wines while adapting oenological practices to changing conditions. This article presents the detailed study of a lachancea thermotolerans strain on matrices typical of the French mediterranean area.

Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Volatile phenols namely 4-ethylphenol and 4-ethylguaiacol are formed by enzymatic decarboxylation of hydroxycinnamic acids by Brettanomyces yeasts to give vinylphenols and subsequent reduction of the vinyl group to form the correspondent ethylphenols. The presence of these compounds in wine affects negatively its aromatic quality, conferring unpleasant animal and phenolic odor when present in quantities above the olfactory detection threshold [1]. Several methods have been described to remove these undesirable compounds from wines, including the use laccase enzymes [2, 3]. Due to this, the aim of this work was to evaluate the effect of several natural redox mediators on the activity of Botrytis cinerea laccase against these volatile phenols.

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.