WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Oral presentations 9 Consumers’ emotional responses elicited by wines according to organoleptic quality

Consumers’ emotional responses elicited by wines according to organoleptic quality

Abstract

Wine is often described with emotional terms, such as surprising, disappointing or pleasant. However, very little has been done to really characterize this link between emotions and wine. Can it really bring emotions to wine tasters? Many studies have looked at the extrinsic factors that can improve the emotional experience of tasters when discovering a wine (Danner et al. 2016, 2017), but few have been carried out on the emotional impact of the organoleptic characteristics of wines. One study, however, has shown that where novice consumers fail to distinguish two different styles of red wine using conventional sensory descriptors, they manage to do it with emotional attributes (Coste et al. 2018). This new approach highlights a role for emotions in tasting, and it seems interesting to try to better understand and characterize this role. The present study explored the link between organoleptic quality defined by tasting experts and emotions felt by consumers (connoisseurs). Different red Bordeaux wines, with different sensory properties and different levels of quality (defined by wine experts) have been tasted by 65 connoisseurs. Emotions were measured using both direct and indirect methods. The evaluation of the conscious part of emotions was conducted with cognitive measurements, using self-declarative questionnaires. The unconscious part of emotions was evaluated with two types of measurements. One measures the behavioral component of emotions with facial expressions, and the other measures the response of the autonomic nervous system with physiological data known to be correlated to emotional response, such as heart rate, respiratory rate and skin conductance level. Finally, the aim was to evaluate whether it is possible to differentiate wines through emotions and which type of measure (conscious or unconscious) is the most relevant. The results were compared with classical approach in sensory analysis with consumers (measure of hedonic perception).

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Inès Elali, Gilles de Revel, Katia M’Bailara, Laurent Riquie, Sophie Tempère

Presenting author

Inès Elali – Université Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, 33882 Villenave d’Ornon cedex, France

Université Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, 33882 Villenave d’Ornon cedex, France | Univ. Bordeaux, LabPsy, EA 4139, France ; Hospital Charles Perrens, Bordeaux, France

Contact the author

Keywords

Wine – Emotions – Organoleptic quality – Psychophysic – Sensory analysis

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The effects of reducing herbicides in New Zealand vineyards

Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Evaluation of sap flow and trunk diameter measurements in grapevines using time series decomposition

Grapevines are very sensitive to weather conditions. Excessively hot and dry periods trigger the activation of survival mechanisms, such as reduction of crop transpiration and the redistribution of water. Monitoring these mechanisms is, therefore, essential to better understand the grapevine water dynamics and maximize water-use efficiency.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.