Terroir 1996 banner
IVES 9 IVES Conference Series 9 Bilan hydrique: une méthode proposée pour l’évaluation des réserves hydriques dans le zonage viticole

Bilan hydrique: une méthode proposée pour l’évaluation des réserves hydriques dans le zonage viticole

Abstract

Dans le zonage viticole mis en place dans la province de Taranto, on a introduit la méthode du bilan hydrique pour évaluer les réserves hydriques dans les 8 zones déterminées (Zones 1, 2, 3A, 3B, 4A, 4B, 5A, 5B).
Cette évaluation revêt une importance toute particulière car dans ce milieu l’eau constitue un facteur limitatif.
Une première phase de mise au point de la méthode a été prévue en 1998 et a été effectuée en comparant les données d’humidité évaluées et celles mesureés directement avec la méthode “gravimétrique”.
Les données recueillies jusqu’à présent et circonscrites à la variété Primitivo des zones 2, 3B, 4A, 4B, 5A, 5B, mettent en évidence que la méthode proposée est en mesure de relever de façon satisfaisante les différences d’humidité.. Si nous observons ces premiers résultats, la réponse de cette méthode semble être donc positive et en ligne avec les expectatives prévues.

 

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Giorgessi F., Calò A., Tomasi D. and Catalano V.

Istituto Sperimentale per la Viticoltura, XXVIII Aprile, 26 – 31015 Conegliano (TV) – Italie

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.

Phenolic composition of Tempranillo Blanco grapes changes after foliar application of urea

Our research aimed to determine the effect and efficiency of foliar application of urea on the phenolic composition of Tempranillo Blanco grapes. The field experiment was carried out in 2019 and 2020 seasons and the plot was located in D.O.Ca Rioja (North of Spain). The vineyard was Vitis vinifera L. Tempranillo Blanco and grafted on Richter-110 rootstock. The treatments were control (C), whose plants were sprayed with water and three doses of urea: plants were sprayed with urea 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The applications were performed in two phenological stages, pre-veraison (Pre) and veraison (Ver). Also, each of the treatments was repeated one week later. Control and treatments were performed in triplicate and arranged in a randomised block design. Grapes were harvested at optimum ripening stage. High-performance liquid chromatography was used to analyse the phenolic composition of the grapes. Finally, the results obtained from the analytical determinations – flavonols, flavanols and non-flavonoid (hydroxybenzoic acids, hydroxycinnamic acids and stilbenes) – were studied statistically by analysis of variance. The results showed that, in 2019, U6-Pre and U9-Pre treatments increased the hydroxybenzoic acid content in grapes, and also all foliar treatments applied at Pre enhanced the stilbene concentration. Moreover, U3-Ver was the only treatment that rose flavonol and stilbene contents in the Tempranillo Blanco grapes. In 2020, all treatments applied at Pre enhanced the flavonol concentration in grapes. Furthermore, U3-Pre and U9-Pre treatments increased stilbene content in grapes. Nevertheless, the hydroxybenzoic acid content was improved by U6-Ver and U9-Ver and besides, hydroxycinnamic acid concentration in grapes was increased by all treatments applied at Ver. In conclusion, the lower and highest dose of urea (U3 and U9), applied at pre-veraison, were the best treatments to improve the Tempranillo Blanco grape phenolic composition.

Terroir Hesse – Soil determines wine style

The project “Terroir Hesse” works out the main type and characteristics of soil-based terroirs and the resulting wine styles for the hessian wine-growing regions Rheingau and Hessian Bergstrasse.

Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Phenolic compounds are fundamental to wine quality, influencing its colour, mouthfeel, stability, and ageing
potential [1]. Their extraction and evolution during fermentation plays a crucial role in determining the final sensory
attributes and requires careful monitoring to guide winemaking decisions.