Terroir 1996 banner
IVES 9 IVES Conference Series 9 Caracterización de las tierras de viña de Navarra

Caracterización de las tierras de viña de Navarra

Abstract

Este programa se enmarca dentro de las líneas de trabajo del Departamento de Agricultura, Ganadería y Alimentación del Gobiemo de Navarra y su objetivo general es conocer adecuadamente las tierras del área donde se distribuye la viña y la consecuente respuesta vitivinícola del cultivo.
Comenzado en 1994 (SEA, 1994 ), sus objetivos principales son:

– Describir y caracterizar las condiciones naturales de los terrenos vitivinícolas diferenciados en Navarra.
– Representar a escala 1/25.000 la distribución territorial de dichos terrenos vitivinícolas.
– Crear el Catalogo de los terrenos vitivinícolas de Navarra.
Para su desarrollo se cuenta con la participación y la documentación de la Estación de Viticultura y Enología de Navarra (EVENA) y del Consejo Regulador de la D.O. Navarra.

En esta comunicación se expone el planteamiento general del trabajo y se presentan los primeros resultados obtenidos en la Comarca Agraria V (Navarra Media Oriental), que tiene una superficie total de 130.211,5 ha (12,5 % de Navarra) y en ella se ubican 4.637 ha de vifia (22,8 % del total).

 

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

VICENTE ALZUAZ, A. and DONÉZAR DÎEZ DE ULZURRUN, M.

Sección de Suelos y Climatología. Servicio de Estructuras Agrarias. Departamento de Agricultura, Ganadería y Alimentación. Gobiemo de Navarra. C/ Monasterio de Urdax, 28-8°. 31011 Pamplona

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Influence of agronomic practices in soil water content in mid-mountain vineyards

In the context of LIFE project MIDMACC (LIFE18 CCA/ES/001099), several pilots have been installed in vineyards in mid mountain areas of Catalonia (NE Spain) to test well stablished agronomic practices to increase the adaptation of Mediterranean mid mountain to climate change. Soil water content (SWC) at three different depths (15, 30 and 45cm) was measured in continuum from August 2020. One pilot (WC) included a well-established green cover (GC), a new GC (NC) and a conventional soil management (CM, tilling+herbicides). NC presented an intermediate state between WC and CM, responding similarly to CM in autumn but quickly reaching similar SWC to WC, then following the same evolution till next spring, with CM presenting lower values along autumn and winter. Then vegetation activation decreased SWC in all plots, (much slower in CM, lacking GC). Sensibility to spring rains is again intermediate for NC, which joins SWC evolution of CM by the end of spring till next autumn. It is expected that NC will resemble WC more and more as its GC develops. In the pilot combining vine training (VSP vs Gobelet) and hillside management (slope vs terrace), no clear pattern could be related with these conditions. However, both terraces seem to be more sensitive to spring rains. A third pilot included new vineyards (7 and 1 year old). In the new vineyard (N), higher canopy development, a spontaneous green cover and row straw resulted in a slower SWC dynamic, not so sensitive to rains but conserving more soil water in spring and most of summer, even with presumably a higher water extraction by vines. In the newest vineyard (VN) the deepest sensor is still sensitive to rain events all over the year and SWC is always highest at this depth, revealing small water capture by vines.

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.

Genotype-environment interaction of three cultivars of vitis vinifera L. cultivated in two different environments of the Ischia island: effect on production and quality; aspects of the quality of the obtained wines

Pendant une période de trois années le comportement productif et qualitatif de trois cépages tous indigènes de la région de Campania (Italie méridionale) dans deux terroirs de l’île d’Ischia a été étudié; ceci pour obtenir quelques indications préliminaires sur le comportement productif et qualitatif des cépages et sur la qualité des vins.

Meso-scale geostatistical analysis: a method for improving experimental design

The growing region of Barolo DOCG certified wines is topographically complex. The region is famous for this complexity and for the associated terroir driven Nebbiolo grapes and wines derived distinctly from this varietal. Although it is recognized that the Barolo area is unusual topographically and it is assumed that this unusual topography lends to the inherit terroir, the specifics of this relationship are less well defined.

Monitoring grapevine downy mildew epidemics with SkySat and PlanetScope imagery

Grapevine downy mildew (GDM), caused by the oomycete Plasmopara viticola, is one of the most destructive diseases of Vitis vinifera worldwide. All V. vinifera cultivars are susceptible to P. viticola infection, and epidemics can spread across an entire vineyard within a matter of weeks. Severe outbreaks cause substantial reductions in yield and fruit quality. Tracking GDM spread by manual scouting is time-consuming and unfeasible over large spatial extents.