Terroir 1996 banner
IVES 9 IVES Conference Series 9 Caracterización de las tierras de viña de Navarra

Caracterización de las tierras de viña de Navarra

Abstract

Este programa se enmarca dentro de las líneas de trabajo del Departamento de Agricultura, Ganadería y Alimentación del Gobiemo de Navarra y su objetivo general es conocer adecuadamente las tierras del área donde se distribuye la viña y la consecuente respuesta vitivinícola del cultivo.
Comenzado en 1994 (SEA, 1994 ), sus objetivos principales son:

– Describir y caracterizar las condiciones naturales de los terrenos vitivinícolas diferenciados en Navarra.
– Representar a escala 1/25.000 la distribución territorial de dichos terrenos vitivinícolas.
– Crear el Catalogo de los terrenos vitivinícolas de Navarra.
Para su desarrollo se cuenta con la participación y la documentación de la Estación de Viticultura y Enología de Navarra (EVENA) y del Consejo Regulador de la D.O. Navarra.

En esta comunicación se expone el planteamiento general del trabajo y se presentan los primeros resultados obtenidos en la Comarca Agraria V (Navarra Media Oriental), que tiene una superficie total de 130.211,5 ha (12,5 % de Navarra) y en ella se ubican 4.637 ha de vifia (22,8 % del total).

 

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

VICENTE ALZUAZ, A. and DONÉZAR DÎEZ DE ULZURRUN, M.

Sección de Suelos y Climatología. Servicio de Estructuras Agrarias. Departamento de Agricultura, Ganadería y Alimentación. Gobiemo de Navarra. C/ Monasterio de Urdax, 28-8°. 31011 Pamplona

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

The role of NAC61 transcription factor in the regulation of berry ripening progression 

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated.

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae.

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow

Exploring magnesium defficiency in Welschriesling grapevines: A multi-omics approach to address viticultural challenges

Magnesium (Mg) deficiency poses a significant challenge to viticulture, particularly affecting Welschriesling (WR), a key grape variety in Austrian and Central European vineyards.