Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonage vitivinicole: recherches et considérations initiales sur une proposition de “nouvelle” méthodologie d'”évaluation de la qualité” du produit tel qu’élément base pour le zonage aussi

Zonage vitivinicole: recherches et considérations initiales sur une proposition de “nouvelle” méthodologie d'”évaluation de la qualité” du produit tel qu’élément base pour le zonage aussi

Abstract

Si on part de l’introduction que l’activité vitivinicole maintenant plus que jamais doit être une activité d’entreprenariat introduite de mieux en mieux sur le territoire et donc effectuée pour rendre maximal le Profit “d’entreprise” dans un contexte de centralité de l’homme et du milieu entendu dans le sens plus ample du terme (Profit “sociale” et “existentiel”) (Cargenllo G. 1997).
Faisant suite à ce que nous avons exposé sur les: “GRANDS ZONAGES” et “QUALITE ECONOMQUE, “ECONOMIE DE LA QUALITE e DE LA PREFERENCE” et sur la “QUALITE”, “PREFERENCE”, COUT, PRIX, PROFIT etc., ainsi que sur la nécessité d’évaluer un bien ou un service et donc aussi un vin en allant au-delà de l’aspect organoleptique.
Dans ce travail, on expose les premières considérations initiales sur une proposition de “nouvelle méthodologie” d’évaluation d’un produit ou d’un service, dénommeé CIMEC (Cima IMprenditoriale Conegliano), basé sur le fait d’évaluer, ( dans ce cas spécifique), le vin non seulement au niveau organoleptique (qualité) et/ou de la part du consommateur (qualité-prix), mais aussi de la part du producteur considérant dans l’équation mise au point pour évaluer le produit, pour le moment: qualité organoleptique, préférence, prix, coût et profit, par le biais le méthode dénommeé CIMEC.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Giovanni Cargnello

Sezione di Tecniche colturali Istituto Sperimentale per la Viticoltura Conegliano (Treviso)
Via 28 Aprile 26, 31015 Conegliano (Treviso) – Italy

Contact the author

Keywords

CIMEC, nouvelle évaluation qualité, qualité économique, qualité sociale, qualité existentielle

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

What are the optimal ranges and thresholds for berry solar radiation for flavonoid biosynthesis?

In wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile under context of climate change. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together as the climate continues to get hot.

Fermentations management: tools for the preservation of the wine specificity

Development of the indigenous microflora is not insignificant on the wine quality. S. cerevisiae indigenous strains are low tolerant to ethanol.

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

Assessing the relationship between cordon strangulation, dieback, and fungal trunk disease symptom expression

Grapevine trunk diseases including Eutypa dieback are a major factor in the decline of vineyards and may lead to loss of productivity, reduced income, and premature reworking or replanting. Several studies have yielded results indicating that vines may be more likely to express symptoms of vascular disease if their health is already compromised by stress. In Australia and many other wine-growing regions it is a common practice for canes to be wrapped tightly around the cordon wire during the establishment of permanent cordon arms. It is likely that this practice may have a negative effect on health and longevity, as older cordons that have been trained in this manner often display signs of decay and dieback, with the wire often visibly embedded within the wood of the cordon. It is possible that adopting a training method which avoids constriction of the vasculature of the cordon may help to limit the onset of vascular disease symptom expression. A survey was conducted during the spring of two consecutive growing seasons on vineyards in South Australia displaying symptoms of Eutypa lata infection when symptomless shoots were 50–100 cm long. Vines were assessed as follows: (i) the proportion of cordon exhibiting dieback was rated using a 0–100% scale; (ii) the proportion of canopy exhibiting foliar symptoms of Eutypa dieback was rated using a 0–100% scale; (iii) the severity of strangulation was rated using a 0–4 point scale. Images were also taken of each vine for the purpose of measuring plant area index (PAI) using the VitiCanopy App. The goal of the survey was to determine if and to what extent any correlation exists between severity of strangulation and cordon dieback, in addition to Eutypa dieback foliar symptom expression.

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.