Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonificación climática de las D.O. Rueda y Toro y vinos de la tierra de medina del campo

Zonificación climática de las D.O. Rueda y Toro y vinos de la tierra de medina del campo

Abstract

La producción vitícola es el resultado de una serie de factores influyentes (variedad, patron) dentro de un medio ecológico­-climatico-edafico, en el que se interactua por medio de técnicas de cultivo adecuadas.
En la caracterización climática del viñedo estan presentes tanto los elementos tradicionales (temperatura, precipitación, insolación, etc.) así como los factores geográficos (latitud y longitud, altitud, orientación, exposición, proximidad a masas de agua, etc).
Para ver la influencia sobre el vinedo, en las distintas fases de su ciclo vegetativo, se cuantifican y se analizan los parametros mas relevantes en las D.O. Rueda y Toro, Tierra de Vinos.
Las caracteristicas climáticas más destacables de la región pueden ser resumidas (Garcia Femandez, 1986) como sigue:
– clima continental determinado por los efectos de encajamiento y aislamiento definidos por las cadenas montañosas que la rodean.
– rigurosos ( crudos) y largos inviemos: bajas temperaturas medias y generalización de los val ores negativos de las temperaturas medias de las minimas del mes de enero, minimas absolutas acusadamente bajas y largo periodo invernal.
– veranos cortos, relativamente suaves y con fuertes oscilaciones térmicas, con periodos estivales fríos y otros de calor riguroso.
– contrastes acusados en la cuantía y bajos indices de precipitaciones.
– aridez estival sensible y contrastada: acusada aridez estival, complejidad de la precipitación estival, duración de la aridez estival.
– régimen de precipitaciones con contrastes y matices con predominio de la de invierno y primavera.

 

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000 

Type: Article

Authors

Pérez A, Gómez-Miguel V., Sotés V.

Escuela Técnica Superior de Ingenieros Agrónomos

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Experimental vinification of withered grapes of Vitis vinifera “Muscat of Alexandria”

The objective of the present work is to investigate wine produced from dehydrated grapes and vinified according to classical Roman manuals.

METHODS – Locally produced Muscat of Alexandria’s grapes were used for the sweet wine production, grown in the experimental vineyard of Instituto Superior de Agronomia (Lisbon, Portugal). The grapes were harvested manually slightly over-ripe and subjected to greenhouse drying. After 7-10 days dried grapes were transported to an experimental winery for various operations (e.g., grape weighing, sorting, crushing/destemming). Several maceration protocols were used comprising the addition of saltwater and white wine to whole bunches or destemmed grapes. Fermentation was conducted with the addition of commercial yeast. The standard physico-chemical parameters of wines were determined according to the OIV standards.

Effects of hormone- and natural-based elicitors at the transcriptomic level in berries of cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of the application of three hormone- and natural-based elicitors in Tempranillo.

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

Changing New Zealand climate equals a changing New Zealand terroir?

Changing New Zealand climate equals a changing New Zealand terroir

Characterization of resistant varieties produced in the context of a search for regional typicality

Planted between 2018 and 2019, the ‘New Vine’ system is a vineplot, comprising 169 individuals genotypes (5 vines/individual), located on a gravelous soil, in the INRAE Grande-Ferrade site (Villenave d’Ornon, France).