IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Profiling the Metschnikowia yeast populations in spontaneous fermentation of Amarone della Valpolicella

Profiling the Metschnikowia yeast populations in spontaneous fermentation of Amarone della Valpolicella

Abstract

The microbial diversity during spontaneous grape must fermentation has a determinant influence on the chemical composition and sensory properties of wine. Therefore, yeast diversity is an important target to better understand wine regionality. Hence, the aim of this study was to isolate, identify, and characterize the yeast core microbiota in grape must during the early stage of lab-scale spontaneous fermentation of withered grapes to produce Amarone della Valpolicella wine (Verona, Italy). At the end of the withering process, chosen grape bunches, mainly of Corvina and Corvinone varieties, were pressed and transferred to glass bottles in the laboratory for spontaneous fermentation (SF). To investigate the impact of grape washing on microbial removal, one batch of grapes was submitted to a washing step in aqueous solution (1% w/v citric acid) at the winery before pressing. Microbial composition was investigated during the first five days of fermentation, a stage known for greater variability of microorganisms, isolating yeast colonies from WL agar plates. Overall, 67 colonies were purified and the partial 26S rRNA gene sequencing allowed the identification of six different species, among which Metschnikowia spp. was prevalent. Indeed, 42 isolates of this genus were obtained, deriving from musts of washed grapes (22) and from non-washed grapes (20). Interestingly, the washing step did not impact on the presence of pulcherrimin-producing isolates. A more in-depth characterization was carried out on those 42 isolates, as Metschnikowia spp. are acknowledged to contribute to the diversity and complexity of wine taste. A strain level analysis was performed by means of fingerprinting profiles (primer (GTG)5) and phenotypic characterization (sulfite reductase, β-glucosidase, and esterase enzymatic activities). 11 genotypic profiles and 6 different phenotypic combinations were observed among the 42 isolates. Considering both approaches, it was possible to define the presence of 19 strains of Metschnikowia spp., most of them isolated only once, but some present in both washed and non-washed grapes, throughout the whole sampling period. Results obtained in this study shed light on the native Metschnikowia yeast community of washed and non-washed withered grapes, that is composed by diverse strains, and highlight that this biodiversity can be underestimated if only genotypic or phenotypic properties are investigated. This diversity represents a reservoir of strains with enological/pro technological significance that could be applied and combined to improve the sensory characteristics of wine and fermented beverages. 

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martelli Francesco1, Checchia Ilaria1, Troiano Eleonora1, Gatto Veronica1, Leal Binati Renato1, Torriani Sandra1 and Felis Giovanna E.1

1Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

non-Saccharomyces; microbial diversity; spontaneous fermentation; wine quality; grape washing

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.