Terroir 1996 banner
IVES 9 IVES Conference Series 9 Cultivation site effect on the quality of Moscato di Pantelleria

Cultivation site effect on the quality of Moscato di Pantelleria

Abstract

In 1997 and 1999, sixteen cultivation sites of cv. Muscat of Alexandria different for pedological conditions, altitude and exposition were selected through all Pantelleria isle. In 1997 in each site, described and classified according to USDA Soil Taxonomy and FAO Soil Classification methods, grapes, collected at technological ripening, were microvinificated, following a standard procedure which allowed to obtain the naturally sweet wine DOC Moscato di Pantelleria. Wines, five months after vinification, were analysed by gaschromatography. Moreover they were described by sensorial analysis using a non structured parametric card. In 1999, grape maturation trend was observed in the same cultivation sites, At harvest time, productive parameters were collected for the vines of each site; furthermore grapes of each site were collected and microvinificated and the main juoce parameters were determinated.
The different pedological substrates, but above all, the expositions, summarised in some landscape units, determined important differences in the accumulation process which delayed up to 40-50 days the ripening among the early and late sites. Wines produces in the early sites presented a particular sensorial profile either in quantity and in quality, with sensorial descriptors linked to citrus, white flowers and green legumes, while in wines produces with grapes of late sites, sensorial descriptors were linked to fruit jam and stone fruits. Different mixture of wines coming from the two different origins resulted in complex and elegant wines.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Brancadoro L. and Scienza A.

Dipartimento di Produzione Vegetale sezione di Coltivazioni Arboree, Università di Milano

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

How to improve the mouthfeel of wines obtained by excessive tannin extraction

Red wines felt as astringent and bitter generally show high content of tannins due to grape phenolic compounds’ extraction in the maceration process. Among different enological practices, mannoproteins have been shown to improve the mouthfeel of red wines (1) and the color (2,3). In this work, we evaluated the effect of mannoproteins on the mouthfeel profile of Sangiovese wines obtained by excessive tannin extraction.

Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

The main challenge of regulated deficit irrigation (RDI) research is to isolate the factors that come with RDI, the direct effect of plant water status from the indirect ones like increased radiation and temperature changes on the cluster zone. This study aims to isolate the effects of vine water status from the effects of increased radiation on the phenolic composition of grapes subjected to RDI.
A three-year study on an RDI experiment where radiation was controlled was implemented in a commercial vineyard of Cabernet Sauvignon in Chile. Four RDI treatments based on partial evapotranspiration (ET) irrigation were established. Irrigation treatments were 100% ET, 70% ET, 50-100% ET (50% ET before veraison and 100% ET afterward), and 35-100% ET (35% ET before veraison and 100% ET afterward).

Peptidomics in the wine industry: literature perspectives on functional importance and analytical methods

Winemaking is a globally significant industry in the field of food technology (218 mhL of wine estimated for 2024 harvest) [1], which activity produces tons of by-products annually, including pomace (pulp, stems, seeds, skins), lees, organic acids, CO2, and water [2].

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.