Terroir 1996 banner
IVES 9 IVES Conference Series 9 Influence du terroir et de la conduite du verger sur la vigueur, le développement et la productivité des pommiers. Conséquences sur la teneur en sucres des pommes

Influence du terroir et de la conduite du verger sur la vigueur, le développement et la productivité des pommiers. Conséquences sur la teneur en sucres des pommes

Abstract

Dans le cadre d’une étude globale de l’influence du type de sol et de la conduite du verger sur la composition des pommes à cidre, une attention particulière est portée sur les facteurs amonts de la qualité comme la vigueur et la productivité des arbres. En effet, il est connu que des vergers ne présentant pas une bonne qualité de fruits correspondent souvent à des arbres où le rapport feuilles/fruits devient insuffisants pour assurer une bonne alimentation des organes fructifères (Poll et al, 1996). Par ailleurs, les plus faibles taux de sucres des pommes sont généralement obtenus avec des arbres présentant un excès de vigueur. Dans ce cas, il existe une compétition nutritionnelle des gourmands et pousses de l’année vis-à-vis des organes fructifères (Goldwin et Ermen, 1989).
Les sols du territoire AOC du pays d’Auge (Normandie) sont développés sur des substrats, datant soit de l’ère secondaire (Jurassique, Crétacé), soit de l’ère tertiaire comme l’argile à silex qui résulte de l’altération de la craie formée au Crétacé. Au quaternaire, ces terrains ont été recouverts par des apports éoliens épais encore bien représentés sur les plateaux. Ces différents sols présentent un gradient de profondeur et de fertilité important. Les travaux présentés dans cette note portent sur l’étude de la vigueur et du développement des pommiers en fonction des principaux types de sols rencontrés dans le Pays d’Auge. Pour deux années, les relations entre vigueur, productivité et teneur en sucres des pommes sont recherchées.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000 

Type: Article

Authors

A. Jacquet, I. Travers, V. Boisgontier and J.C. Simon

UA INRA 950 de Physiologie et Biochimie Végétales. IRBA. Université de Caen, 14032 Caen cedex

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

How do we describe wine imagery? Expertise shapes language usage and multimodal imagery for wine

The acquisition of wine expertise is a multi-faceted and multisensory process with implications for sensory perception, attention, memory, and language production. With the prevalence of the predictive model of brain functioning, one area of burgeoning research interest involves wine mental imagery, since the brain relies on imagined experiences to build predictions for the future. Recent evidence has shown that, for instance, those with higher imagery vividness are more susceptible to wine advertising. However, little is known about the association between mental imagery and other associated cognitive processes, such as the ability to produce words that describe such imagery. 

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

New genomic techniques for sustainable management of water stress and pathogen control

Context and purpose of the study. Climate changes pose the need to develop new grapevine varieties and rootstocks that are more tolerant to stress and diseases.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Assessing bunch architecture for grapevine yield forecasting by image analysis

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages. The accuracy of the method for predicting bunch weight at different phenological stages was assessed for seven different varieties.