Terroir 1996 banner
IVES 9 IVES Conference Series 9 La vinificación de las uvas aromáticas: Moscateles y Malvasías

La vinificación de las uvas aromáticas: Moscateles y Malvasías

Abstract

Las uvas aromáticas se pueden dividir en dos clases, Moscateles y Malvasías, dependiendo del hecho de que el linalol o el geraniol, respectivamente, sean los alcoholes terpénicos monohidroxilados que predominan en el jugo de la uva. Dentro de cada clase existen numerosas subclases que se diferencian por las relaciones entre los otros alcoholes terpénicos mono y dihidroxilados, en forma libre y glicosilada. Otra diferencia entre los Moscateles y las Malvasías es la cantidad de compuestos terpénicos libres del mosto, (los terpenos del hollejo, en las dos clases, se encuentran casi en su totalidad como formas glicosiladas) que puede ser alto como en el caso del Moscatel (linalol, óxido trans piránico del linalol, 2,6-dimetil-3,7-octadien-2,6-diol) o mas bién bajo como en el caso de las Malvasías (geraniol, 2,6-dimetil-3,7-octadien-2,6-diol), mientras que en los hollejos es una característica común a las dos clases la presencia de elevadas cantidades de nerol y de geraniol en forma glicosilada. La composición terpénica de las dos variedades condiciona, además del aroma del vino final, la tecnología de producción.En Italia con el “Moscato bianco” y con las Malvasías (“Malvasia di Casorzo”, “Malvasia di Castelnuovo don Bosco”, esta última en muchos aspectos parecida a los Moscateles, “Brachetto d’Acqui”, que son todas variedades tintas) se preparan dos tipos de vino: uno espumoso y uno no espumoso. El primero se caracteriza por un contenido alcohólico de aproximadamente un 7%y una concentración de azúcares de aproximadamente 70 g/L y el segundo por un grado alcohólico del 5 % y una cantidad de azúcares variable dependiendo de los gustos del productor.En la vinificación del “Moscato bianco” se utiliza solo el mosto (una eventual criomaceración no conlleva un aumento sensible en compuestos terpénicos), que es rico de linalol que no resulta ni absorbido ni metabolizado por las levaduras, mientras que en el caso de las Malvasías tintas, para cuya vinificación se utilizan también los hollejos, el geraniol, practicamente el único alcohol terpénico monohidroxilado presente en el mosto, es metabolizado parcialmente por las levaduras y en parte reducido a citronellol y estos dos compuestos, además del nerol, son transformados en derivados acetilados. Además, a causa de las elevadas cantidades de glucosa que se encuentran en el mosto durante toda la fase de preparación de los vinos de estas variedades, los enzimas glicosidásicos, del mosto o de las levaduras, no pueden transformar en los respectivos aglicones los glicósidos del nerol y del geraniol presentes en el mosto, que quedan, por lo tanto, en forma glicosilada, es decir, no aromática, en el vino final. Las técnicas tradicionales de vinificación establecen, para la extracción del color y de los compuestos terpénicos de los hollejos de las Malvasías tintas, continuos remontados cuando la fermentación todavía no ha empezado, o una fermentación parcial en presencia de los hollejos. Estas dos técnicas son insuficientes sea para extraer la gran cantidad de glicósidos del nerol y del geraniol de los hollejos, sea para hidrolizar los glicósidos terpénicos. En este trabajo se presenta una nueva técnica de vinificación, que favorece la extracción y la hidrólisis de los compuestos terpénicos de los hollejos de las Malvasías tintas y que incrementa sensiblemente la intensidad del aroma y la calidad de los vinos que se obtienen con esta variedad.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000 

Type: Article

Authors

Rocco Di Stefano*, Emilia García Moruno* and Monica Ribaldone**

*Istituto Sperimentale per l’Enologia, via P. Micca 35 — 14100 Asti (Italia)
**Consorzio per la tutela del Brachetto

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture.

Terpenoids and norisoprenoids in italian red wines

AIM Terpene compounds are associated with floral notes and are characteristic of aromatic grape varieties such as Muscat (Jackson, 2008). They are generally considered to potentially contribute to the aroma of white wines. However, there is a growing interest towards the potential contribution of terpene compounds to the aroma of red wines. The aim of this work was to investigate the occurrence of different terpenes in red wines from Italian varieties. METHODS For this study wines from 11 mono-varietal Italian red wines from 12 regions were used (19 Sangiovese, 11 Nebbiolo, 10 Aglianico, 11 Primitivo, 10 Raboso del Piave, 9 Cannonau, 11 Teroldego, 3 Nerello, 9 Montepulciano, 7 Corvina). All samples were from vintage 2016 and none of them had been in contact with wood. A total of 19 terpenes and 7 norisoprenoids were analysed by mean of SPME-GC-MS analysis using a DVB-CAR-PDMS fiber. The wines were collected in the framework of the activities of the D-Wines (Diversity of Italian wines) project.

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Wine aroma is a complex gaseous mixture composed of various compounds; some of these molecules derive directly from the grapes while most of them are released and synthetized during fermentation or are due to ageing reactions

Characteristics of ecological production of grape and wine in Prizren’s vineyard territory in Yugoslavia

Prizren’s vineyard territory-y assigned for ecological production of grapes and wine includes 1. 200 hectares of vineyard located in five separate localities which belongs to the P KB “Kosovo vina”, Mala Krusa in Prizren. Division of vineyard territory in zones was carried out in 1974. Pertaining to the vineyards, the climate and soil conditions have been studied and determined as well as topographie establishing of vineyard boundaries.

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.