Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

Abstract

AIM: During alcoholic fermentation and wine aging, indole-3-acetic acid (IAA) can degrade into 2-aminoacetophenone (AAP). The presence of reasonable amount of AAP in wines is regarded as the main cause of untypical ageing defect (UTA) described by aroma descriptors such as “acacia blossom”, “furniture polish”, “wet wool”, “mothball”, or “fusel alcohol” [1, 2]. This study aims to evaluate the effectiveness of different oenological adjuvants (ascorbic acid, glutathione, ellagic tannin, gallotannin and grape tannin) added to must in pre-fermentation for preventing the possible development of UTA. In addition, a high-resolution suspect-screening approach was performed to evaluate the kinetics of formation and consumption of metabolites formed during the oxidative degradation of IAA into AAP.

METHODS: Johannitter, Pinot Blank, Pinot Gris and Riesling musts were separately added with each of the 5 adjuvants (GrT, EgT, GaT, ASC and GSH), fermented and finally added of sulfur dioxide. The free and conjugated IAA forms were qualified or quantified in wine at the end of the fermentation and the AAP was finally quantified after a period of forced ageing (6 days at 40 °C). Quantification was performed using a HPLC coupled with a high-resolution mass spectrometer (UHPLC-HQOMS) using a biphenyl column (3×150 mm, 2.7 µm) with formic acid 2% and acetonitrile as eluents [3]. The quantification limits ranged from 0.25 to 2 μg/L, excepted for AAP that had a quantification limit of 0.02 μg/L. For qualitative analyses, homemade standards of indole-acetic acid-2-sulfonate (IAA-SO3H) and of metabolites produced by oxidative chemical reaction of IAA to AAP (radical cation, FAP, FAPOP and Ox-IAA) were prepared. The IAA-hexoside RT was studied with a full mass/all ion fragmentation/NL data dependent-MS2 (Full MS/AIF/NL dd-MS2) experiment in positive ion mode [4].

RESULTS: Ascorbic acid has been confirmed as the most appropriate antioxidant adjuvant which can be used for UTA defect prevention. With an almost comparable effect, gallotannin also did not show AAP productions greater than 1 µg/L. Over 80% of the variability of potential AAP formation in wines was explained by an ANCOVA model, which was used to predict the possible AAP production considering the varieties, treatments and IAA content in young wine as known variables. 

CONCLUSIONS

Thanks to high resolution mass spectrometry, we were able to qualify and quantify different precursors and metabolites that take part in the development of UTA, allowing a better understanding of the mechanisms of AAP formation and the adjuvants actions involved in the wine protection.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Tiziana Nardin

Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy,Tomas Roman, Susanne Dekker, Roberto Larcher  Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy

Contact the author

Keywords

uta, AAP, HRMS

Citation

Related articles…

Analysis of mousy off-flavour wines

Winemakers are increasingly experimenting with new techniques, such as spontaneous fermentation, prolonged yeast contact, higher pH, minimal sulphur dioxid, filtration and clarification or oxidative ageing. Along with this, the risk of microbial spoilage increases, and so the off-flavour mousiness, long time underestimated, is becoming more frequent. Characteristic of the mousy off-flavour is the delayed perception after swallowing the wine. After a few seconds the flavour appears, reminiscent of a dirty mouse cage. There are three known compounds that cause mousy off-flavor: 2-ethyltetrahydropyridine, 2-acetyltetrahydopyridine, and 2-acetylpyrroline. Yeasts such as Dekkera/Brettanomyces and heterofermentative lactic acid bacteria like Lactobacillus hilgardii can release these compounds.

Identification of arbuscular mycorrhizal fungi species preferentially associated with grapevine roots inoculated with commercial bioinoculants 

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and can help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial bioinoculants containing AMF are widely available and represent a potential opportunity to reduce the dependence of grapevines on agrochemicals. However, which commercially available AMF species colonize vine roots and affect vine growth remains unknown. The aim of this study was to identify the AMF species from commercial bioinoculants that colonize grapevine roots using high-throughput sequencing, and to evaluate the performance of five commercial bioinoculants and their effects on own-rooted Cabernet sauvignon.

The wine country, between landscape and promoting tool. The example of Chinon and Saint-Nicolas-de-Bourgueil vineyards (France)

When talking about wine, terroirs are never too far. The National Institute of Apellation d’Origine (INAO) defines it as a system inside of which interact a group of human factors, an agricultural production and a physical environment.

Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.