Terroir 1996 banner
IVES 9 IVES Conference Series 9 Caratteristiche fisico-chimiche dei suoli coltivati a vite e loro influenza nella diffusione del mal dell’esca

Caratteristiche fisico-chimiche dei suoli coltivati a vite e loro influenza nella diffusione del mal dell’esca

Abstract

[English version below]

Il mal dell’esca é una malattia della vite della quale sono state studiate sintomatologia, eziologia, patogenesi ed epidemiologia. Essendo una malattia che colpisce soprattutto la parte epigea delle piante, le caratteristiche dei suoli non sono mai state considerate fra le responsabili della sua insorgenza e diffusione. In questo lavoro abbiamo studiato suoli di vigneti in cui il mal dell ‘esca présenta un ‘elevata incidenza e suoli di vigneti dove tale incidenza è scarsa o nulla. Le osservazioni morfologiche ed i risultati analitici indicano che i vigneti più danneggiati dalla malattia sono quelli i cui suoli presentano condizioni idromorfe a minima profondità, fra i 35 ed i 65 cm. Al contrario, i terreni dove l’incidenza é scarsa non presentano segni di idromorfia.
La difficoltà di percolazione, con conseguente instaurarsi di condizioni asfittiche, può essere imputata a due cause: 1) diminuzione di porosità totale negli orizzonti inferiori e 2) preponderante presenza di microporosità dovuta all’eccessivo contenuto di argilla e limo (dal 48 al 76%). Inoltre, l’argilla è costituita da minerali in grado di espandersi in presenza di acqua e, quindi, di rallentare ulteriormente il drenaggio del suolo. Al tri fattori che favoriscono la formazione di orizzonti asfittici sono: 1) i bassi tenori di carbonio organico non sufficienti a prevenire la migrazione dell ‘argilla; 2) la scarsa efficienza delle opere di drenaggio e 3) le lavorazioni meccaniche. Nei suoli ben drenati il contenuto di argilla e limo non supera il 45%, i minerali a reticolo espandibile sono presenti in tracce e, di conseguenza, non vi sono difficoltà di percolazione. Dalle nostre osservazioni risulta quindi che i vigneti maggiormente soggetti al mal dell ‘esca sono quelli che tendono a sviluppare condizioni di scarso drenaggio.

Studies have been conducted on the symptomatology, aetiology, pathogenesis and epidemic of the esca, a disease that affects grapes. Since Esca attacks mostly the above ground parts of the plants, the soil has not been considered relevant in the development and spreading of this disease. In this work we have investigated vineyard soils with a high incidence of esca, and others with a low or no incidence. Our morphological observations and analyses have shown that those vineyard affected by esca also manifest poorly drained conditions at a depth of about 35-65 cm. On the contrary the soils where the occurrence of the disease is less manifested are well drained.
The irnpeded drainage, with the attendant unoxy conditions, can be attributed to two causes: 1) a decreasing porosity in the lower horizons and 2) the prevailing micro porosity due to the high content of clay and silt (from 48 to 76%). Moreover, the clay is made of minerals that, once hydrated, tend to expand, further reducing the porosity and, thus, the drainage. Others factors that additionally cause a deterioration of the drainage are 1) the low organic matter content that prevent aggregation; 2) the inadequate drainage structures and 3) the continuous mechanical operations. In the well-drained soils the clay plus silt content is always less than 45%, the expandable minerals are presence in traces and, hence, there are not limitations to impede the drainage. We conclude that the vineyards more vulnerable to the esca are those painted on soils which tend to develop poorly drained conditions.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

GIUSEPPE CORTI, FIORENZO C. UGOLINI, ROSANNA CUNIGLIO

Dipartimento di Scienza del Suolo e Nutrizione della Pianta
Piazzale delle Cascine, 15 – 50144 Firenze

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA™ Protect), against this problem in Cabernet Sauvignon must. The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid. This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Implication of secondary viral infections on grafting success rated in nurseries

Grapevine grafting is a complex process that since the establishment of phylloxera has become mandatory for grapevine. Grafting success in grapevine nurseries considerably varies among years and batches with most variety/rootstock combinations reach a high success rate (between 75% and 90%), but some combinations show lower success rates of around 40-50%. The causes of this variation are unknown, although biotic stresses like those caused by some viral infections have been demonstrated to affect the process. European certification schemes for the vegetative propagation of the vine include five major viruses (Arabis mosaic virus, Grapevine Fanleaf Virus, Grapevine Fleck Virus, and Grapevine-associated Leafroll Virus 1 and 3).

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.