terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wines and atypical aging: investigating the risk of refermentation

Abstract

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Atypical aging is a sensorial fault that can occur soon after bottling. Characterized by the appearance of unpleasant scents (mothballs, damp towel and furniture polish) and the loss of varietal aroma, its chemical and sensorial origin is attributed to the presence of 2-aminoacetophenone (AAP), a degradation compound of indole-3-lactic acid (IAA). While at biological level this plant auxin is carefully regulated via bonding with amino acids or sugars, during fermentation, yeast is capable of freeing up unbound IAA. In the presence of oxidizing agents, its conversion into AAP leads to the appearance of ATA in wine.[1] Since yeast-related biochemical mechanisms are involved in the development of this fault and SW production entails a double fermentation process, the final product deserves extra attention in terms of ATA development. Therefore, the aim of this study was to evaluate the likelihood of producing tainted SW. To do so, 55 grape musts of 12 different varieties harvested over three vintages were fermented twice, initially to make the BWs and then the SWs. Interestingly, it was found that not only refermentation and storage increased the AAP content but also that the danger of producing ATA-tainted wines does not end with the making of SW. Indeed, upon an accelerated aging test, it was observed that the concentration of AAP was even increased. By using the data obtained from the BW samples, an ANCOVA model of linearization able to predict the formation of AAP upon refermentation with a R2 of 0.7 was created.

Acknowledgements: The authors would like to thank Cavit sc. for the technical and financial support.

References: 

1)  Schneider V. (2014) Atypical aging defect: Sensory discrimination, viticultural causes, and enological consequences. Rev. Am. J. Enol. Vitic., 65:277–284, DOI 10.5344/ajev.2014.14014
2)  Christoph, N., et al. (1998) Bildung von 2-Aminoacetophenon und Formylaminoacetophenon im Wein durch Einwirkung von schwefliger Säure auf Indol-3-essigsäure. Vitic. Enol. Sci 53.2, 79-86.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Simone Delaiti1,2*, Tomas Roman2, Tiziana Nardin2, Stefano Pedo’2, Roberto Larcher2

1C3A, Center Agriculture Food Environment, Via Edmund Mach, 1, San Michele all’Adige, TN, 38010 Italy
2Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy

Contact the author*

Keywords

atypical aging, sparkling wine, refermentation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.