Terroir 1996 banner
IVES 9 IVES Conference Series 9 Caratterizzazione delle produzioni vitivinicole dell’ area del Barolo: un’esperienza pluridisciplinare triennale (5)

Caratterizzazione delle produzioni vitivinicole dell’ area del Barolo: un’esperienza pluridisciplinare triennale (5)

Abstract

Content of the article

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

V. GERBI (1), G. ZEPPA (1), L. ROLLE (1), A. BOSS0 (2), M. C. CRAVERO (2)

1. Dipartimento Valorizzazione e Protezione delle Risorse Agroforestali dell’Università degli Studi – Settore Microbiologia e Industrie agrarie
Via Leonardo da Vinci, 44 – 10095 Grugliasco – Torino

2.lstituto Sperimentale per l’Enologia di Asti, Via Pietro Micca, 35 – Asti

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

The role and quantification of vitamins in wine: what do we know?

AIM: Vitamins are essential compounds to numerous organisms, including yeasts, and appear highly significant during winemaking processes.

GC-O and olfactoscan approaches to reveal premature aging markers in Chardonnay wine

Molecular markers of wine oxydation, such as sotolon or Strecker’s aldehydes that induce respectively nut or curry and boiled vegetables or wilted rose odors, can be percieved as a default by consumers. These volatile compounds are especially formed during the premature aging of wine, but it is likely that several contributing compounds are still unknown as is their combined contribution. This study was carried out to identify the markers of oxydation in Chardonnay wine by Gas Chromatography Olfactometry (GC-O) and to study the impact of these markers on the complex wine aromatic buffer using the Olfactoscan approach.A Chardonnay wine (2018-vintage), taken after malolactic fermentation without sulphites addition, was submitted to an artificial oxidation to simulate more or less prononced premature oxidation. Volatile compounds were extracted by Solid-Phase Extraction (SPE) and analysed by GC-O with a panel of 13 trained subjects. The same extract was also submitted to a second analysis based on the Olfactoscan technique, which allowed to evaluate the impact of each volatile compounds on the complex aromatic buffer of a non-oxidized wine delivered as background odor. Preliminary results revealed three types of behavior. On the one hand, several odor zones appeared only with the background odour, suggesting a synergy effect induced by the compounds in the aromatic buffer. Conversely, odor-active compounds could not be perceived within the background odor suggesting a masking effect. Finally several compounds were found to contribute as key odorants for wine oxydation once mixed with the aromatic buffer. These compounds are still to be identified using complementary techniques.

Oenological performances of new white grape varieties

The wine industry works to minimize pesticides and adapt to climate change. Breeding programs have developed disease-resistant grape varieties, particularly against downy and powdery mildew, to minimize pesticide applications [1]. However, their enological potential remains underexplored.

Field performance of red and white “pilzwiderstandsfähige” (PIWI) cultivars in the south of Uruguay

As knowledge about the oenological potential of disease-tolerant grape varieties (PIWI) continues to grow and consumer demand for product safety and sustainable production increases, more governments worldwide are permitting the cultivation of these varieties [1].

Mitigation of retronasal smoke flavor carryover in the sensory analysis of smoke affected wines

With the steady rise in wildfire occurrence in wine regions around the world, there are quality issues beginning to face the wine industry. These fires produce clouds of smoke which have the ability to carry organic molecules across vast distances that can be absorbed by grapes. When these compounds make their way into the final wine, unpleasant smokey and burnt flavors are present, along with a lasting ashy finish. Along with the volatile compounds carried by smoke, once incorporated into the fruit these compounds become bound to sugars, forming glycosidic compounds.