Terroir 1996 banner
IVES 9 IVES Conference Series 9 Étude intégrée et allégée des terroirs viticoles en Anjou: caractérisation et zonage de l’unité terroir de base, en relation avec une enquête parcellaire

Étude intégrée et allégée des terroirs viticoles en Anjou: caractérisation et zonage de l’unité terroir de base, en relation avec une enquête parcellaire

Abstract

The terroir concept is presented as the basis of the A.O.C system, in the french vineyards. The “Anjou terroirs” programme aims at bringing the necessary scientific basisfor a rational and reasoned exploitation of the terroir. lt must lead to finalizing a lighter, more relevant integrated method of characterisation wich could be generally applied. The “Basic Terroir Unit “concept, elaborated earlier, is now more precise,from the standpoint of soil characterisation, because of the current study. This allowed to initiate the Rock, Alteration, Alterite ground model wich is currently being tested. A viticultural survey based on parcels, has been carried out among vine-growers, in order to study the possibilities of lightening the terroir characterisation method. lt includes for example, questions concerning empirical knowledge of the soil, the climate of the parcel, vine budbreak precocity, water supply and vigour potential of vine, as well as question on overmaturing aptitude of the parcel. These variable are influenced by the natural factors of the “terroir” and they can be logically explained. The main results of the study are presented and discussed in this paper.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

R. MORLAT, P. GUILBAULT, LYDIE THÉLIER, HUCHÉ, D. RIOUX

Unité de Recherches sur la Vigne et le Vin, Centre INRA d’Angers
42, rue G. Morel. BP 57. 49071 Beaucouzé Cédex. France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Waste valorization in winery and distillery industry by producing biofertilizers and organic amendments

The winery and distilling spirits industry generate a remarkable amount of by-products and wasted, that are not properly managed, posing socioeconomic problems and environmental risks, due to its seasonal and polluting characteristics.

Effects of temperature on the aroma composition of hydrolysates from grape polyphenolic and aroma fractions (PAFs)

The aim is to assess whether fast anoxic aging hydrolysis (75ºC x 24 h) can satisfactorily predict aroma developed from grape aroma precursors at milder conditions (50ºC x 5 weeks).

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.