Terroir 1996 banner
IVES 9 IVES Conference Series 9 Étude intégrée et allégée des terroirs viticoles en Anjou: caractérisation et zonage de l’unité terroir de base, en relation avec une enquête parcellaire

Étude intégrée et allégée des terroirs viticoles en Anjou: caractérisation et zonage de l’unité terroir de base, en relation avec une enquête parcellaire

Abstract

The terroir concept is presented as the basis of the A.O.C system, in the french vineyards. The “Anjou terroirs” programme aims at bringing the necessary scientific basisfor a rational and reasoned exploitation of the terroir. lt must lead to finalizing a lighter, more relevant integrated method of characterisation wich could be generally applied. The “Basic Terroir Unit “concept, elaborated earlier, is now more precise,from the standpoint of soil characterisation, because of the current study. This allowed to initiate the Rock, Alteration, Alterite ground model wich is currently being tested. A viticultural survey based on parcels, has been carried out among vine-growers, in order to study the possibilities of lightening the terroir characterisation method. lt includes for example, questions concerning empirical knowledge of the soil, the climate of the parcel, vine budbreak precocity, water supply and vigour potential of vine, as well as question on overmaturing aptitude of the parcel. These variable are influenced by the natural factors of the “terroir” and they can be logically explained. The main results of the study are presented and discussed in this paper.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

R. MORLAT, P. GUILBAULT, LYDIE THÉLIER, HUCHÉ, D. RIOUX

Unité de Recherches sur la Vigne et le Vin, Centre INRA d’Angers
42, rue G. Morel. BP 57. 49071 Beaucouzé Cédex. France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Effects of winemaking practices on Pinot blanc quality

Two winemaking processes for Pinot blanc were investigated following the chemical and sensory profiles for 12 months, aiming at: i) determining the chemical and sensory profiles

Oenological potential of cv. Tortojona: A minority grape variety from Extremadura, southwest Spain

This work, included in the VAVEGEX project, aims to evaluate the oenological, phenolic, chromatic and sensory characteristics of the grapes, must and wines produced from cv. Tortojona, minority variety grown in Extremadura region (Southwest, Spain).

The Fontevraud charter in favour of the viticultural landscapes

The viticultural regions of the world have the advantage of a remarkable diversity of landscapes which are the reflection of the winegrowers’ capacity to adapt to the different geomorphological and climatic specificities of the terroirs, more generally speaking, this aesthetic and heritage aspect of the terroir is also part and parcel of the notion of sustainable viticulture.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.