Macrowine 2021
IVES 9 IVES Conference Series 9 Know thy enemy: oxygen or storage temperature?

Know thy enemy: oxygen or storage temperature?

Abstract

It is well known that high oxygen levels and high ageing temperatures are detrimental to white wine’s composition and ageing capacity. However, these results, though valuable, have often been obtained under extreme temperatures of oxygen levels that wine will normally not be exposed to (Cejudo-Bastante et al.,2013). Previous work performed have shown that multiple oxygen additions to wine can lead to the degradation of certain important compounds such as varietal thiols and SO2 (Coetzee et al., 2012). However, the interactive effects between oxygen additions normally experienced during bottling and temperatures that wine are exposed to during bottle ageing, have not received sufficient attention, especially in terms of sensorial development of the wine. The main aim of this work was thus to investigate the effects of different oxygen levels at bottling and subsequent bottle ageing temperatures on white wine’s chemical and sensorial development over time. Sauvignon Blanc and Chenin Blanc wines were both produced under relative reductive conditions and then bottled at 0.3, 3 and 6 mg/L total packaged oxygen and closed under screw cap. These wines were then stored at either 15 or 25 °C for 6 and 12 months and analysed for a wide array of compounds (antioxidants, colour, varietal thiols and major volatiles) as well as sensorially with descriptive analyses using a trained panel. Oxygen levels in the wine decreased more rapidly in the wines stored at 25 °C. However, the parameter tested that was influenced by the different oxygen additions to the largest extent was the SO2 levels, which decreased the most at the highest oxygen levels. Time was the largest contributor in terms of changes in the yellow/brown colour and glutathione levels. Varietal thiols levels were not affected by the oxygen levels, but higher temperatures led to more rapid acid hydrolyses of 3MHA in the case of the Chenin Blanc wines. Certain fruity esters also decreased quicker at the higher storage temperatures. Time and especially storage temperature had the largest effects on the sensory composition of the Sauvignon Blanc wines, with oxygen influencing it to almost no extent. Higher storage temperatures led to less fruity aromas such as grapefruit and passion fruit after 12 months, with more baked apple. The trends were less clear in the Chenin Blanc after 6 months, but oxygen led to significantly lower levels of the guava descriptors, with little difference observed between the treatments after 12 months. This work indicates that wine producers should strive to keep oxygen pickup to a minimum during bottling, but that such quality control procedures is probably to a large extent negated if the wines are exposed to too high storage temperatures during subsequent bottle ageing.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Wessel Du Toit 

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University,James Walls, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University Carien Coetzee, Basic wine

Contact the author

Keywords

oxidation, bottling, bottle ageing

Citation

Related articles…

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Screening of aroma metabolites within a set of 90 Saccharomyces strains

Currently, the main demand in the global wine market relies on products with unique flavour profiles, character, and typicity, and the metabolism of yeasts greatly influences the organoleptic properties of wines. Therefore, the natural diversity of Saccharomyces strains rises in interest over the last decade, but a large part of this phenotypic diversity remains unexplored

Identification of cis-2-methyl-4-propyl-1,3-oxathiane as a new volatile sulfur compound (VSC) in wine

Despite their trace concentrations, volatile sulfur compounds (VSCs) are an important category of flavour-active compounds that significantly contribute to desirable or undesirable aromas of many foods and beverages. In wines, VSCs in the form of polyfunctional thiols, notably 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate (3-SHA), and 4-sulfanyl-4-methyl-pentan-2-one (4-MSP), possess extremely low olfactory thresholds (≈ ng/L) and pleasant “tropical aroma” notes. They have received much attention with respect to their sensory contributions, quantitative occurrences, biogenesis, and thiol management through viticulture and winemaking. However, the fate of these potent volatiles are still not fully understood.

Enhancing grapevine transformation and regeneration: A novel approach using developmental regulators and BeYDV-mediated expression

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering crispr/cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate.

Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Biomass accumulation in yeast has been studied in this work in terms of their role in fermentation processes. So, biotin is involved in many reactions and nitrogen metabolism disorders