Terroir 1996 banner
IVES 9 IVES Conference Series 9 Evoluzione stagionale delle temperature ed andamento della maturazione nel vitigno Aglianico: risultati di un quadriennio di osservazioni in Campania

Evoluzione stagionale delle temperature ed andamento della maturazione nel vitigno Aglianico: risultati di un quadriennio di osservazioni in Campania

Abstract

In viticoltura, la comprensione dell’influenza della temperatura dell’aria sulla dinamica della maturazione assume importante rilievo in relazione all’ ottimizzazione dell’ epoca di raccolta da cui dipende in modo significativo la qualità del prodotto finale.
La corretta valutazione delle esigenze termiche dei vitigni riveste inoltre significativo interesse ai fini della pianificazione territoriale ed in particolare della scelta dei siti adatti alla loro colti­vazione.
In una precedente nota sono state studiate le relazioni in argomento sul vitigno campano Fiano (Scaglione et al., 1998). Nell’ Aglianico, che entra nella composizione di numerose DOC e della DOCG “Taurasi”, tali relazioni non sono state indagate.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

G. SCAGLIONE, C. PASQUARELLA, M. BOSELLI

Dipartimento di Arboricoltura, Botanica e Patologia Vegetale
Università degli Studi di Napoli Federico Il, Portici

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Evaluation of glutathione content in four white varieties in the d.o. Ca. Rioja (Spain)

Glutathione is a tripeptide that is mainly found in reduced form in grapes. It generates during the maturation of the grape, increasing significantly after veraison [1].

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Haplotype-resolved genome assemblies of Chasselas and Ugni Blanc

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous real-field genetic pool Vitis vinifera cultivars by combining high-fidelity long-read sequencing (HiFi) and high‐throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar.