Terroir 1996 banner
IVES 9 IVES Conference Series 9 Influenza del sito di coltivazione nella espressione aromatica del Moscato liquoroso di Pantelleria

Influenza del sito di coltivazione nella espressione aromatica del Moscato liquoroso di Pantelleria

Abstract

ln 1997, twenty six cultivation sites of cv. Muscat of Alexandria different for pedological conditions, altitude and exposition were selected through ail Pantelleria isle. ln each site, described and classified according to USDA Soil Taxonony and FAO Soil Classification methods, grapes, collected at technological ripening, were microvinificated, following a standard procedure which allowed to obtain the naturally sweet wine DOC Moscato di Pantelleria. Wines, five months after vinification, were analysed by gaschromatography. Moreover they were described by sensorial analysis using a non structured parametric card. The different pedological substrates, but above ail, the expositions, summarised in some landscape units, determined important differences in the accumulation process which delayed up to 40-50 days the ripening among the early and late sites. Wines produces in the early sites presented a particular sensorial profile either in quantity and in quality, with sensorial descriptors linked to citrus, white flowers and green legumes, while in wines produces with grapes of late sites, sensorial descriptors were linked to fruit jam and stone fruits. Different mixture of wines comingfrom the two different origins resulted in complex and elegant wines.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

BRANCADORO L. (1), PILENGA C. (1), SCIENZA A. (1), LANATI D. (2), GUAITOLI F. (3), PERCIABOSCO M. (3), PUMO A. (3)

(1) lstituto di Coltivazioni Arboree – Università degli Studi – Milano
(2) ENOSIS, Cuccaro Monferrato – Alessandria
(3) Assessorato Agricoltura e Foreste – Regione Sicilia

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Exploring the behavior of alternatives to montmorillonite clays in white wine protein stabilization

Visual clarity in wines is crucial for commercial purposes [1]. Potential protein haze in white wines remains a constant concern in wineries, commonly addressed using bentonite [2].

Influence of weather and climatic conditions on the viticultural production in Croatia

The research includes an analysis of the impact of weather conditions on phenological development of the vine and grape quality, through monitoring of four experimental cultivars (Chardonnay, Graševina, Merlot and Plavac mali) over two production years. In each experimental vineyard, which were evenly distributed throughout the regions of Slavonia and The Croatian Danube, Croatian Uplands,

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

Identifying best parameters to characterize genotypes capability of retaining adequate malic acid at harvest and in final wines

Under current climate change pressures, obtaining grapes with adequate acidity at harvest is one of the main challenges for growers, especially if the goal is producing sparkling wines. This issue arises from two main occurrences: i) higher temperatures enhance degradation of malic acid; ii) grape maturity may occur under suboptimal climatic conditions due to an advanced phenology.

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.