Terroir 1996 banner
IVES 9 IVES Conference Series 9 L’étude “terroirs d’Anjou”: un exemple de caractérisation intégrée des terroirs viticoles, utilisable à l’échelle parcellaire

L’étude “terroirs d’Anjou”: un exemple de caractérisation intégrée des terroirs viticoles, utilisable à l’échelle parcellaire

Abstract

Natural factors of the production (“terroir” and vintage) are known as an important element for identifying wines by their genuine typicité and their authenticity. The program “Terroirs d’Anjou” (1994-1999) aims at bringing the necessary scientific basis for a rational and reasoned exploitation of the terroir. This study is based on a method of soil characterization called: “Basic Terroir Units” concept (UTB). This method integrates the three main physical components of the terroir (geology, soil, environment landscape). An viticultural survey is farthermore driven to take into account human factors of the terroir. The study contains 29 communes situated to the south of the Loire river and covers the “Coteaux du Layon” and “Coteaux de l’Aubance” areas. All the datas of the terroir characterization are spatialised within a Geographical Information System that allows the publishing of thematic maps. The concrete valorization of the work is to produce cartographie atlas at the disposal of wine­growers presenting the diverse “Basic Terroir Units”, and also advisory maps in order to optimise the wine-growers practises according to the terroir. Each map uses a large working scale (1:25 000) which allows for the results to be used for each parcel.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

D. RIOUX, P. GUILBAULT, R. MORLAT

U.R.V.V. – Centre I.N.R.A. d’Angers – 42, rue Georges Morel – BP 57 – 49071 BEAUCOUZE Cedex – France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Monitoring grapevine downy mildew epidemics with SkySat and PlanetScope imagery

Grapevine downy mildew (GDM), caused by the oomycete Plasmopara viticola, is one of the most destructive diseases of Vitis vinifera worldwide. All V. vinifera cultivars are susceptible to P. viticola infection, and epidemics can spread across an entire vineyard within a matter of weeks. Severe outbreaks cause substantial reductions in yield and fruit quality. Tracking GDM spread by manual scouting is time-consuming and unfeasible over large spatial extents.

Taking advantage of difficulties. Variable rate application based on canopy maps to achieve a sustainable crop

Aim: The aim of this work was to evaluate the use of Variable Rate Application technologies based on prescription maps in commercial vineyards with large intra-parcel variability to achieve a more sustainable distribution of Plant Protection Products (PPP)

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.

Cumulative effects of repeated drought stress on berry composition, and phenolic profile: Field experiment insights

Drought stress has a profound impact on grapevine productivity and significantly alters key quality-related traits of berries. Although research has been conducted on the effects of individual drought events, there is still a knowledge gap regarding the cumulative consequences of repeated exposure to water scarcity and the influence of the timing of stress imposition. To address this gap, a field experiment was conducted to investigate the impacts of repeated drought stress on yield, berry composition, and the phenolic profile of grape berries. The results indicate that yield is primarily influenced by pre-veraison water deficit. Although the number of clusters was only slightly reduced, a substantial decrease in berry size was observed, resulting in a notable reduction in overall yield.

Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Aim: This study aims to show the application of a new methodological approach to improve the resolution of Sentinel-2A images and derived vegetation indices through the results from different vineyards.