Terroir 1996 banner
IVES 9 IVES Conference Series 9 La zonazione in due zone viticole dell’emilia Romagna

La zonazione in due zone viticole dell’emilia Romagna

Abstract

Entre 1988 et 1995, dans la région Emilia-Romagna, deux zonages viticoles ont été complétés en zones assez differentes, soit géographiquement, soit par les conditions pedo-climatiques, soit par l’encépagement. À ouest de la région, en province de Piacenza, le zonage a considéré la Val Tidone, un vaste territoire de colline, compris entre 100 et 400 m d’altitude, avec les cépages Barbera, Croatina et Malvoisie de Candia aromatique; à est de la région, mais toujours dans une zone de colline, on a réalisé le zonage des vignobles appartenents au commune de Cesena (FO) où Trebbiano romagnolo et Sangiovese sont les cépages les plus importants.
Les “terroirs” des deux zones ont été caractérisés avec les études de la pédologie et du clima, alors que l’interaction génotype x milieu appliquée aux données productives et à l’analyse sensorielle des vins a permis de définire les aptitudes des milieux à la culture des differentes cépages.

 

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

FREGONI M. (1), ZAMBONI M. (1), VENTURI A. (2)

(1) lstituto di Frutti-Viticoltura – Università Cattolica Sacro Cuore
(2) PiacenzaC.R.P.V. – Filiera Vitivinicola, Tebano (RA)

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.

Agri-photovoltaics: first experience above Riesling vines

Agri-photovoltaics (apv) describes the dual use of an agricultural area for food production and solar power generation. There are already a number of systems in operation around the world with various crops and under a wide range of different set-ups. In large parts, they still allow mechanical cultivation and other positive side effects of an APV system were observed in addition to the increase in utilization in the form of electricity and food: effects on the water balance and passive protection against extreme weather events.

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.

Energy optimization of the Charmat-Martinotti refermentation process

The european union has estimated that energy consumption for wine production is about 1,750 million kwh per year, of which 500 million kwh is attributable to italy. In recent years, Italy has emerged as the world’s leading wine producer with about 50 million hectoliters per year. About 20 percent (9.8 million hectoliters) of Italian wine is marketed after refermentation according to the Charmat-Martinotti method.