Terroir 1996 banner
IVES 9 IVES Conference Series 9 La zonazione in due zone viticole dell’emilia Romagna

La zonazione in due zone viticole dell’emilia Romagna

Abstract

Entre 1988 et 1995, dans la région Emilia-Romagna, deux zonages viticoles ont été complétés en zones assez differentes, soit géographiquement, soit par les conditions pedo-climatiques, soit par l’encépagement. À ouest de la région, en province de Piacenza, le zonage a considéré la Val Tidone, un vaste territoire de colline, compris entre 100 et 400 m d’altitude, avec les cépages Barbera, Croatina et Malvoisie de Candia aromatique; à est de la région, mais toujours dans une zone de colline, on a réalisé le zonage des vignobles appartenents au commune de Cesena (FO) où Trebbiano romagnolo et Sangiovese sont les cépages les plus importants.
Les “terroirs” des deux zones ont été caractérisés avec les études de la pédologie et du clima, alors que l’interaction génotype x milieu appliquée aux données productives et à l’analyse sensorielle des vins a permis de définire les aptitudes des milieux à la culture des differentes cépages.

 

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

FREGONI M. (1), ZAMBONI M. (1), VENTURI A. (2)

(1) lstituto di Frutti-Viticoltura – Università Cattolica Sacro Cuore
(2) PiacenzaC.R.P.V. – Filiera Vitivinicola, Tebano (RA)

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Building new temperature indexes for a local understanding of grapevine physiology

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

Can wine composition predict quality? A metabolomics approach to assessing Pinot noir wine quality as rated by experts

The perception of wine quality is determined by the assessment of multiple sensory stimuli, including aroma, taste, mouthfeel and visual aspects. With so many different parameters contributing to the overall perception of wine quality, it is important to consider the contribution of all metabolites in a wine when attempting to relate composition to quality.

Benefits and risks of the utilization of grape pomace as organic fertilizers

Rhineland-Palatinate is Germany’s largest wine growing region. The recently launched collaborative project in the frame of the ‘Carl-Zeiss-Stiftungs-Kooperationsfonds für Nachhaltigkeitsforschung’ focusses on the risk-benefit assessment of the use of grape pomace (GP) from the region ‘Pfalz’ in Rhineland-Palatinate as a natural fertilizer

Development of a new lab-scale carbonation method for applications to sparkling wines

Carbon dioxide (CO2) is the gaseous species responsible for the sparkle in all sparkling wines, influencing their
visual appearance, aromas and mouthfeel.