GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

Abstract

Context and purpose of the study ‐Evaluation of xylem embolism is an important challenge in identifying drought tolerant genotypes within the context of climate change. Visualization methods such as the optical vulnerability technique (Brodribb et al. 2016) has been shown to be a reliable and accessible approach to observe the spread of embolism in dehydrating leaves (Hochberg et al. 2017; Lamarque et al. 2018). In this study we use the optical technique to examine the development of leaf embolism in three grapevine cultivars as a method to characterize their drought‐tolerance strategy.

Material and methods ‐Potted plants of Grenache, Semillon and Syrah were grown outdoors in 2018 under well‐watered conditions. Leaf embolism formation and spread was evaluated in four individuals per genotype by monitoring changes in light transmission through the xylem after the irrigation was cutted‐off. For each plant, a mature leaf was placed on a scanner and imaged every 5 minutes until complete desiccation. Simultaneous measurements of stem water potential (Ystem) were registered using psychrometers properly installed on the main stem. The accuracy of the psychrometers was evaluated by measuring the leaf water potential in adjacent leaves previously bagged with aluminum foil using a Scholander pressure bomb. The stack of images obtained were analyzed using the ImageJ software as described in Lamarque et al. (2018). The percentage of embolism (%emb) was calculated as the cumulative number of embolised pixels normalized to the total number of embolised pixels throughout the dehydration. Finally, the %emb was represented as a function of Ystem and different events were colored using a continuous scale respective to their time of appearance.

Results ‐Embolism formation and spread in the leaves were detected at different times for each cultivar since the beginning of drought. While Grenache showed the first embolism event at around 48 h of desiccation (‐0.48 MPa), Semillon showed its first event after 72 h (‐1.5 MPa). Syrah plants were placed in between the other two genotypes showing the first embolisms at ‐0.68 MPa. The vulnerability curves (%emb vs Ystem) constructed from the data obtained followed a sigmoidal function for all genotypes and showed a great variability between individuals. In spite of this, the time and water potentials at which the main embolisms occurred was significantly different between cultivars where Grenache showed an early cavitation (P50 at ‐1.43 MPa), followed by Syrah (P50 at ‐1.65 MPa) and Semillon (P50 at ‐2.08 Mpa). The optical technique tested in this study revealed genotype differences in the temporal appearance of leaf embolism suggesting a different strategy to tolerate dehydration. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Silvina DAYER (1), Régis BURLETT (2), Laurent LAMARQUE2, Sylvain DELZON2, Gregory GAMBETTA1*

(1) Institut des Sciences de la Vigne et du Vin, Écophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, 210 Chemin de Leysotte, F-33140 Villenave-d’Ornon, France
(2) Biodiversité Gènes et Communautés, Institut National de la Recherche Agronomique (INRA), Université Bordeaux, 33610 Cestas, France

Contact the author

Keywords

 Embolism, drought, xylem cavitation, vessels, grapevine

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The influence of external factors on the alcoholic fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains

The adaptation and resilience of scions and rootstocks to water constraint

The ability of grapevine cultivars and rootstocks to cope with and adapt to recurring water constraints is the focus of this study. The contribution of intrinsic (epigenetic) and extrinsic (rootzone microbial community) factors to water stress resilience will be discussed. The study was conducted in a validated model vineyard where three scion cultivars (Pinotage, Shiraz, and Cabernet Sauvignon) on two rootstocks (Richter 110 and USVIT8-7) grow under recurring seasonal water constraint (and control) scenarios since planting (in 2020). Comprehensive profiling of the site, soil, atmospheric conditions, plants, and their physiological responses provide contextual data for the analyses conducted.

Contribution of Electrical Resistivity Tomography (ERT) measurements for characterizing hydrological behaviour of an experimental plot in relation to pedo-geological factors (AOC Gaillac, SW France)

Electrical Resistivity Tomography (ERT) measurements have been performed by the Wenner method on an experimental plot situated in Gaillac region.

Definition of functional indicators of the vine to characterize wine terroirs

La caractérisation des terroirs viticoles est traditionnellement basée sur des descripteurs de la géologie et de la pédologie des différents milieux rencontrés, couplées à des données climatiques

Spatial Analysis of Climate in Winegrape Growing Regions in Portugal

Spatial climate data at a 1 km resolution has allowed for a comprehensive mapping and assessment of viticulture DOs regions in Portugal. Overall the 50 regions and sub-regions in Portugal range