Terroir 1996 banner
IVES 9 IVES Conference Series 9 Observatoire Grenache en Vallée du Rhône: incidence du terroir sur la composition polyphénolique des raisins et des vins

Observatoire Grenache en Vallée du Rhône: incidence du terroir sur la composition polyphénolique des raisins et des vins

Abstract

The Grenache observatory was created in 1995. The object of this 24 parcels network, covering main Rhone Valley soils, is to state the effect of pedo-climatic conditions on plant physiology and wine characteristics. The results concerning colour and tanins show a very important diversity in Grenache behaviour. Anthocyanin content of grapes ranges from one to four, tanins from one to two. These important discrepancies are mainly quantitative and do not affect the thorough composition of grapes and wines. These results are confirmed in wines, and stable along the three years of this study. The parcels of the observatory can be divided in three groups, according to the phenolic content of their grapes. This grading is almost unchanged for the three vintages, which nevertheless were very different. Even if geo-pedologic conditions have an effect on wine phenolic content, climatic factors appear to be the most patent in this study.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

G.MASSON (1), C. PUECH (1), L-M. BREMOND (2), F. BERUD (3), L. LURTON (1)

(1) Comité Interprofessionnel des Vins d’A.O.C. Côtes du Rhône et de la Vallée du Rhône
(2) Syndicat Général des Vignerons Réunis des Côtes du Rhône
(3) G.D.A. Viticulture, Chambre d’Agriculture du Vaucluse, Institut Rhodanien, 2260 route du Grès, 84100 Orange, France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

The ongoing challenge of climate change is driving the need for novel oenological approaches aimed at finding effective environmental solutions.

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).