Terroir 1996 banner
IVES 9 IVES Conference Series 9 Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Abstract

Environment features and management operations on shoot and leaves modify the canopy during the vegetative season, changing the grapevine microclimate and the ratio between photo synthetic sources (the canopy) and productive sinks (the grapes). The aim of the present study was to evaluate on several vineyards the evolution in the season of the canopy development, in order to relate the vegetative behavior of the vine with the quality of grapes at harvest. For two consecutive years canopy development was assessed on 30 Nebbiolo vineyards in the Barolo area, using the point quadrat method. Size and structure of the canopy were assessed in June and September. Yield and qualitative characteristics of the must were determined at harvest. Total leaf area measured at the end of the vegetative season was directly correlated with yield, but it was not correlated with sugars and phenolic accumulation in the grape. However, both sugar and phenolic content in the must were proportional to the increase in canopy area observed between June and September, which is affected by plant vigor and vineyard management techniques (e.g. topping). The results suggest that the quality of Nebbiolo grapes in the Barolo area is affected by environment-induced vigor on one side, and by canopy management on the other side.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

CLAUDIO LOVISOLO (1), ANDREA SCHUBERT (2), ROCCO Dl STEFANO (3)

(1) Dipartimento di Colture arboree dell’Università di Torino
(2) Centro Miglioramento genetico e Biologia della Vite, CNR – Via Leonardo da Vinci, 44 – 10095 Grugliasco
(3) lstituto Sperimentale per l’Enologia, Sez. di Chimica enologica – Via P. Micca, 35 – 14100 Asti

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

The taste of color: how grape anthocyanin fractions affect in-mouth perceptions

Anthocyanins are responsible for the red wine color and their ability to condense with tannins is considered as a contributor in astringency reduction. However, recent studies showed the possibility of anthocyanins to influence directly the in-mouth perception of wines.

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

The opportunities offered by the climate change

Based on the results of experiments since 2000 at the Institut Agro Montpellier and at INRAE – Pech Rouge, and on the international experience acquired during scientific missions, a global reflection on the opportunities offered by climate change is proposed.

Exploring high throughput secondary trait phenomics to improve grapevine breeding

Modern grapevine breeding programs have overcome many challenges using genomic selection, which has allowed breeders to make targeted selections at earlier stages in the breeding process. However, the cost of genetic testing may present a burden for some programs, and markers often struggle to accurately predict quantitative traits. Recent advances in high throughput, high-dimensional data have provoked investigation into the use of high-dimensional phenomics as a low-cost addition to the grape breeder’s toolkit that may offer advantages in predicting quantitative traits. High-dimensional secondary trait (HDST) data has been employed in annual crops for prediction of agriculturally important traits such as yield.

Sensory and chemical phenotyping of wines from a F1 grapevine population

The European Green Deal, a concept of the European Commission, aims at the reduction of pesticides in EU agriculture for 2030 by 50%. Viticulture uses the largest amounts of fungicides in the EU