Terroir 1996 banner
IVES 9 IVES Conference Series 9 Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Abstract

Environment features and management operations on shoot and leaves modify the canopy during the vegetative season, changing the grapevine microclimate and the ratio between photo synthetic sources (the canopy) and productive sinks (the grapes). The aim of the present study was to evaluate on several vineyards the evolution in the season of the canopy development, in order to relate the vegetative behavior of the vine with the quality of grapes at harvest. For two consecutive years canopy development was assessed on 30 Nebbiolo vineyards in the Barolo area, using the point quadrat method. Size and structure of the canopy were assessed in June and September. Yield and qualitative characteristics of the must were determined at harvest. Total leaf area measured at the end of the vegetative season was directly correlated with yield, but it was not correlated with sugars and phenolic accumulation in the grape. However, both sugar and phenolic content in the must were proportional to the increase in canopy area observed between June and September, which is affected by plant vigor and vineyard management techniques (e.g. topping). The results suggest that the quality of Nebbiolo grapes in the Barolo area is affected by environment-induced vigor on one side, and by canopy management on the other side.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

CLAUDIO LOVISOLO (1), ANDREA SCHUBERT (2), ROCCO Dl STEFANO (3)

(1) Dipartimento di Colture arboree dell’Università di Torino
(2) Centro Miglioramento genetico e Biologia della Vite, CNR – Via Leonardo da Vinci, 44 – 10095 Grugliasco
(3) lstituto Sperimentale per l’Enologia, Sez. di Chimica enologica – Via P. Micca, 35 – 14100 Asti

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Evaluation of the impact of different amelioration techniques on the chemical composition and sensory characteristics of smoke impacted wines

AIM: The increasing incidences of wildfires in wine grape growing regions pose a significant risk. Persistent exposure to smoke can compromise the quality and value of wine grapes and adversely affect wines made from smoke exposed grapes.

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.