Terroir 1996 banner
IVES 9 IVES Conference Series 9 Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Abstract

Environment features and management operations on shoot and leaves modify the canopy during the vegetative season, changing the grapevine microclimate and the ratio between photo synthetic sources (the canopy) and productive sinks (the grapes). The aim of the present study was to evaluate on several vineyards the evolution in the season of the canopy development, in order to relate the vegetative behavior of the vine with the quality of grapes at harvest. For two consecutive years canopy development was assessed on 30 Nebbiolo vineyards in the Barolo area, using the point quadrat method. Size and structure of the canopy were assessed in June and September. Yield and qualitative characteristics of the must were determined at harvest. Total leaf area measured at the end of the vegetative season was directly correlated with yield, but it was not correlated with sugars and phenolic accumulation in the grape. However, both sugar and phenolic content in the must were proportional to the increase in canopy area observed between June and September, which is affected by plant vigor and vineyard management techniques (e.g. topping). The results suggest that the quality of Nebbiolo grapes in the Barolo area is affected by environment-induced vigor on one side, and by canopy management on the other side.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

CLAUDIO LOVISOLO (1), ANDREA SCHUBERT (2), ROCCO Dl STEFANO (3)

(1) Dipartimento di Colture arboree dell’Università di Torino
(2) Centro Miglioramento genetico e Biologia della Vite, CNR – Via Leonardo da Vinci, 44 – 10095 Grugliasco
(3) lstituto Sperimentale per l’Enologia, Sez. di Chimica enologica – Via P. Micca, 35 – 14100 Asti

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Understanding and managing wine production from different terroirs

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration

Simulating climate change impact on viticultural systems in historical and emergent vineyards

Global climate change affects regional climates and hold implications for wine growing regions worldwide. Although winegrowers are constantly adapting to internal and external factors, it seems relevant to develop tools, which will allow them to better define actual and future agro-climatic potentials. Within this context, we develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), provides a generic modeling framework for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability…) as well as production strategies and adaptation rules according to climate change scenarios. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Using this model, we have recently analyzed the evolution of vineyards’ exposure to climatic risks (frost, pathogen risk, heat wave) and the adaptation strategies potentially implemented by the winegrowers. This approach, implemented for two climate change scenarios, has been initiated in France on traditional (Loire Valley) and emerging (Brittany) vineyards. The objective is to identify the time horizons of adaptations and new opportunities in these two regions. Carried out in collaboration with wine growers, this approach aims to better understand the variability of climate change impacts at local scale in the medium and long term.

Grapevine rootstock field evaluation under drought and saline condition in California

Climate change impacts grape production worldwide and in California drought and salinity became increasingly challenging for grape growers to maintain sustainable production and fruit quality.

Observation and modeling of climate at fine scales in wine-producing areas

Global change in climate affect regional climates and hold implications for viticulture worldwide. Despite numerous studies on the impact of projected global warming on different regions

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.