IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The wine: a never-ending source of H2S and methanethiol

The wine: a never-ending source of H2S and methanethiol


Volatile sulfur compounds (VSCs), mainly hydrogen sulfide and methanethiol (H2S and MeSH), are the responsible for reductive off-odor in wine. These compounds can remain in the wine under different chemical forms: free forms, bound to metal cations or as oxidized precursors (polysulfides and polysulfanes). Some remediation treatments, such as aeration, micro-oxygenation, copper fining and addition of oenological products are frequently used by the winemakers to eliminate the reductive problems however, they are not completely effective and sometimes this problem can reappear after a certain period of time. Recently, another options (e.g. filtration, purge…) have been also tested but their efficacy at long term is not much better. These strategies act on the free and bonded forms, therefore it has been hypothesized that exist a huge reservoir of VSCs (in oxidized forms) which is not removed by the remediation treatments and that could explain their inefficacy. Nowadays, it does not exist any reliable method to know the amount of oxidized forms in wine which could be the source of H2S and MeSH. This knowledge could help to understand better the problem of reduction of wines and improve the remediation strategies. For that reason, the objective of this work was developing a new system to monitor the release of VSCs during the storage of different wines under anoxia. This system is based on the use of reversible trapping solutions to retain the VSCs at the same time that they are produced in the wine. Different metal cations, in terms of ability and speed have been studied as potential trapping agents. The reversibility of the process to quantify H2S and MeSH was also evaluated. After the system was optimized, it was applied to several wines stored at different temperatures under anoxic conditions. Cu (I) was chosen as the best option to use in the trapping solution and a dilution with brine and addition of tris(2-carboxyethyl)phosphine (TCEP) was selected to revert the trapping process and quantify the analytes. The linearity and the reproducibility of the system was evaluated and satisfactory results were obtained. The stability of the trapping solutions was also studied to know when they should be replaced in the system to avoid problems in the determination of the analytes. The rate of formation of the VSCs on the real wines depended on the storage temperature, ranging the maximum for each wine from 3 µg/hour to 10 µg/hour of H2S at 75ºC and from 0.1 µg/hour to 0.4 µg/hour at 50ºC. In the case of MeSH, the rate was one order of magnitude lower than for H2S. The total amount of VSCs produced was different for each wine and for each temperature, reaching more than 2 mg/L of H2S at 75ºC and more than 200 µg/L at 50ºC after one month of storage. This system could be useful to predict the tendency of a wine to develop the problem of reduction and evaluate the efficacy of different remediation strategies.


Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article


Ontañón Ignacio1, Sánchez-Gimeno Diego1 and Ferreira Vicente1

1University of Zaragoza, Laboratorio de Análisis del Aroma y Enología. Química Analítica. Facultad de Ciencias. Universidad de Zaragoza. C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain

Contact the author


Reduction, sulfur off odors, hydrogen sulfide, sulfide precursors, anoxic storage


IVAS 2022 | IVES Conference Series


Related articles…

The relationship between enzyme treatment and polysaccharide extraction in wine making, and subsequent sensory effects in Cabernet Sauvignon wines

AIM To determine the effect of both ripeness and enzyme maceration on the astringency and bitterness perception of Cabernet Sauvignon winesRecent work has contributed to a more detailed understanding of the grape cell wall deconstruction process from ripening through crushing and fermentation, providing a better understanding of what role polysaccharides play in post-harvest fermentation of grapes(1,2). Current research on glycomics in red wine making suggest polysaccharides are important sensory impact molecules (3–6). METHODSOur experimental system harvests Cabernet Sauvignon grapes at three different ripeness levels and makes wine both with and without enzyme treatment.

Achieving Tropical Fruit Aromas in White Wine through Innovative Winemaking Processes

Tropical fruit aroma is highly desirable in certain white wine styles and there is a significant group of consumers that show preference for this aroma.

Unique resistance traits against downy mildew from the domestication center of grapevine

The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola.

Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

The potassium (K) supply characteristics and clay mineralogies of a population of Western Cape soils were investigated to determine their potential effects on vine K uptake and wine quality. The total K contents of granite-, shale- and sandstone-derived soils varied, averaging 33.7, 26.1 and 4.5 cmol(+)/kg, respectively. Corresponding M NH4Cl exchangeable soil K levels were: 0.172, 0.042 and 0.035 cmol/kg.


Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.