Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonazione aziendale nel territorio del Chianti classico e valorizzazione dei vini

Zonazione aziendale nel territorio del Chianti classico e valorizzazione dei vini

Abstract

[English version below]

Nell’ambiente del Chianti Classico è stato applicato un progetto di zonazione aziendale con l’objettivo di valorizzare le produzioni dei diversi vigneti. In particolare sono stati individuati sette siti, sottoposti a studio particolareggiato per un triennio.
I parametri ecopedologici sono stati correlati ai dati fenologici e produttivi, con particolare riguardo alle sostanze coloranti. I vini ottenuti nelle varie tesi sono stati sottoposti ad analisi sensoriale allo scopo di valutare le potenzialità dei vitigno Sangiovese seconda diverse tecni­che di vinificazione, sia in legno che in acciaio.
I risultati sottolineano la variabilità fenotipica del Sangiovese, in relazione alla struttura fisica dei suoli esaminati. In particolare l’accumulo degli zuccheri risulta dipendere dalle caratteristiche del suolo, mentre il contenuto acidico risulta maggiormente influenzato dal­l’annata. ln condizioni climatiche simili i migliori risultati sono stati ottenuti in suoli ricchi di scheletro e terra fine, con buon drenaggio. La tecnica di maturazione del vino ha diversa­mente influenzato i prodotti ottenuti nei vari vigneti.

On a large farm in the Chianti Classico area, seven vineyards were studied. They had different levels of productivity despite similar cultural practices. The different vineyards were studied over a three-year period with regard to environmental and pedological aspects.
The parameters obtained have been correlated to phenological and productive trends, with regard to the sensorial analisys of wine and the color components. The wines were matured in oak barrel and steel tank to point out the best enological use of the different vineyards productions.
The results underline the phenotypical variability of Sangiovese, especialiy due to the physical structure of the examined soils. In particular, sugar accumulation depended on the soil characteristic, white acidity depended on the year. Under similar climate conditions, the best results on wine were obtained in sandy soils originating from sandy limestone rich with rock fragment. Maturation technique, using oak barrels or steel tanks, has differently influenced wines obtained from various soils.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

EGGER E., GRECO M.G., PIERUCCI M., STORCHI P.

lstituto Sperimentale per la Viticoltura, sezione operativa di Arezzo, Via Romea, 53- ltaly

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest.

REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

The new EU Green Deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050.
REDWine concept will be realized through the establishment of an integrated Living Lab demonstrating the viability of the system at TRL 7. The Living Lab will be able to utilize 2 ton of fermentation off-gas/year (90% of total CO2 produced in the fermenter) and 80 m3 of liquid effluent (100% of the liquid effluent generated during fermenter washing) to produce 1 ton (dry weight) of Chlorella biomass/year. This biomass will be processed under a downstream extraction process to obtain added-value extracts and applied in food, cosmetic and agricultural end-products and to generate a new EcoWine. REDWine will focus on the recovery of off-gas from a 20.000L fermenter of red wine production existing in Adega Cooperativa de Palmela (ACP, located in Palmela, Portugal).