Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonazione aziendale nel territorio del Chianti classico e valorizzazione dei vini

Zonazione aziendale nel territorio del Chianti classico e valorizzazione dei vini

Abstract

[English version below]

Nell’ambiente del Chianti Classico è stato applicato un progetto di zonazione aziendale con l’objettivo di valorizzare le produzioni dei diversi vigneti. In particolare sono stati individuati sette siti, sottoposti a studio particolareggiato per un triennio.
I parametri ecopedologici sono stati correlati ai dati fenologici e produttivi, con particolare riguardo alle sostanze coloranti. I vini ottenuti nelle varie tesi sono stati sottoposti ad analisi sensoriale allo scopo di valutare le potenzialità dei vitigno Sangiovese seconda diverse tecni­che di vinificazione, sia in legno che in acciaio.
I risultati sottolineano la variabilità fenotipica del Sangiovese, in relazione alla struttura fisica dei suoli esaminati. In particolare l’accumulo degli zuccheri risulta dipendere dalle caratteristiche del suolo, mentre il contenuto acidico risulta maggiormente influenzato dal­l’annata. ln condizioni climatiche simili i migliori risultati sono stati ottenuti in suoli ricchi di scheletro e terra fine, con buon drenaggio. La tecnica di maturazione del vino ha diversa­mente influenzato i prodotti ottenuti nei vari vigneti.

On a large farm in the Chianti Classico area, seven vineyards were studied. They had different levels of productivity despite similar cultural practices. The different vineyards were studied over a three-year period with regard to environmental and pedological aspects.
The parameters obtained have been correlated to phenological and productive trends, with regard to the sensorial analisys of wine and the color components. The wines were matured in oak barrel and steel tank to point out the best enological use of the different vineyards productions.
The results underline the phenotypical variability of Sangiovese, especialiy due to the physical structure of the examined soils. In particular, sugar accumulation depended on the soil characteristic, white acidity depended on the year. Under similar climate conditions, the best results on wine were obtained in sandy soils originating from sandy limestone rich with rock fragment. Maturation technique, using oak barrels or steel tanks, has differently influenced wines obtained from various soils.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

EGGER E., GRECO M.G., PIERUCCI M., STORCHI P.

lstituto Sperimentale per la Viticoltura, sezione operativa di Arezzo, Via Romea, 53- ltaly

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Perception of Rose Oxide Enantiomers, Linalool and α-Terpineol to Gewürztraminer Wine Aroma

Monoterpenes are important aroma compounds in white wines. Many monoterpenes are chiral and the chiral forms have different aroma qualities.

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.