Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonazione aziendale nel territorio del Chianti classico e valorizzazione dei vini

Zonazione aziendale nel territorio del Chianti classico e valorizzazione dei vini

Abstract

[English version below]

Nell’ambiente del Chianti Classico è stato applicato un progetto di zonazione aziendale con l’objettivo di valorizzare le produzioni dei diversi vigneti. In particolare sono stati individuati sette siti, sottoposti a studio particolareggiato per un triennio.
I parametri ecopedologici sono stati correlati ai dati fenologici e produttivi, con particolare riguardo alle sostanze coloranti. I vini ottenuti nelle varie tesi sono stati sottoposti ad analisi sensoriale allo scopo di valutare le potenzialità dei vitigno Sangiovese seconda diverse tecni­che di vinificazione, sia in legno che in acciaio.
I risultati sottolineano la variabilità fenotipica del Sangiovese, in relazione alla struttura fisica dei suoli esaminati. In particolare l’accumulo degli zuccheri risulta dipendere dalle caratteristiche del suolo, mentre il contenuto acidico risulta maggiormente influenzato dal­l’annata. ln condizioni climatiche simili i migliori risultati sono stati ottenuti in suoli ricchi di scheletro e terra fine, con buon drenaggio. La tecnica di maturazione del vino ha diversa­mente influenzato i prodotti ottenuti nei vari vigneti.

On a large farm in the Chianti Classico area, seven vineyards were studied. They had different levels of productivity despite similar cultural practices. The different vineyards were studied over a three-year period with regard to environmental and pedological aspects.
The parameters obtained have been correlated to phenological and productive trends, with regard to the sensorial analisys of wine and the color components. The wines were matured in oak barrel and steel tank to point out the best enological use of the different vineyards productions.
The results underline the phenotypical variability of Sangiovese, especialiy due to the physical structure of the examined soils. In particular, sugar accumulation depended on the soil characteristic, white acidity depended on the year. Under similar climate conditions, the best results on wine were obtained in sandy soils originating from sandy limestone rich with rock fragment. Maturation technique, using oak barrels or steel tanks, has differently influenced wines obtained from various soils.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

EGGER E., GRECO M.G., PIERUCCI M., STORCHI P.

lstituto Sperimentale per la Viticoltura, sezione operativa di Arezzo, Via Romea, 53- ltaly

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Identification of cis-2-methyl-4-propyl-1,3-oxathiane as a new volatile sulfur compound (VSC) in wine

Despite their trace concentrations, volatile sulfur compounds (VSCs) are an important category of flavour-active compounds that significantly contribute to desirable or undesirable aromas of many foods and beverages. In wines, VSCs in the form of polyfunctional thiols, notably 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate (3-SHA), and 4-sulfanyl-4-methyl-pentan-2-one (4-MSP), possess extremely low olfactory thresholds (≈ ng/L) and pleasant “tropical aroma” notes. They have received much attention with respect to their sensory contributions, quantitative occurrences, biogenesis, and thiol management through viticulture and winemaking. However, the fate of these potent volatiles are still not fully understood.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

What are the optimal ranges and thresholds for berry solar radiation for flavonoid biosynthesis?

In wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile under context of climate change. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together as the climate continues to get hot.