Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zonazione aziendale nel territorio del Chianti classico e valorizzazione dei vini

Zonazione aziendale nel territorio del Chianti classico e valorizzazione dei vini

Abstract

[English version below]

Nell’ambiente del Chianti Classico è stato applicato un progetto di zonazione aziendale con l’objettivo di valorizzare le produzioni dei diversi vigneti. In particolare sono stati individuati sette siti, sottoposti a studio particolareggiato per un triennio.
I parametri ecopedologici sono stati correlati ai dati fenologici e produttivi, con particolare riguardo alle sostanze coloranti. I vini ottenuti nelle varie tesi sono stati sottoposti ad analisi sensoriale allo scopo di valutare le potenzialità dei vitigno Sangiovese seconda diverse tecni­che di vinificazione, sia in legno che in acciaio.
I risultati sottolineano la variabilità fenotipica del Sangiovese, in relazione alla struttura fisica dei suoli esaminati. In particolare l’accumulo degli zuccheri risulta dipendere dalle caratteristiche del suolo, mentre il contenuto acidico risulta maggiormente influenzato dal­l’annata. ln condizioni climatiche simili i migliori risultati sono stati ottenuti in suoli ricchi di scheletro e terra fine, con buon drenaggio. La tecnica di maturazione del vino ha diversa­mente influenzato i prodotti ottenuti nei vari vigneti.

On a large farm in the Chianti Classico area, seven vineyards were studied. They had different levels of productivity despite similar cultural practices. The different vineyards were studied over a three-year period with regard to environmental and pedological aspects.
The parameters obtained have been correlated to phenological and productive trends, with regard to the sensorial analisys of wine and the color components. The wines were matured in oak barrel and steel tank to point out the best enological use of the different vineyards productions.
The results underline the phenotypical variability of Sangiovese, especialiy due to the physical structure of the examined soils. In particular, sugar accumulation depended on the soil characteristic, white acidity depended on the year. Under similar climate conditions, the best results on wine were obtained in sandy soils originating from sandy limestone rich with rock fragment. Maturation technique, using oak barrels or steel tanks, has differently influenced wines obtained from various soils.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

EGGER E., GRECO M.G., PIERUCCI M., STORCHI P.

lstituto Sperimentale per la Viticoltura, sezione operativa di Arezzo, Via Romea, 53- ltaly

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Vitis v. corvina grapes composition and wine sensory profile as affected by different post harvest withering conditions

Context and purpose of the study – In Valpolicella area (Verona – Italy) Vitis vinifera cv. Corvina is the main wine variety to obtain, after grape withering, Amarone wine: this study was carried out in order to compare two different grape dehydration conditions with the aim of verifying the final composition of Corvina dried grapes and the organoleptic profile of corresponding Amarone wine.

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin.

Unraveling grapevine resilience to water and nutrient limitations

Water and nutrient availability significantly impact crop yield, thus the application of sustainable strategies towards efficient water use and nutrient absorption by plants is needed.

Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Grapevine is subject to multiple stresses, either biotic or abiotic, frequently in combination. These stresses may negatively impact the health status of plants and reduce yields. For biotic stress, grapevine is affected by numerous pest and diseases such as downy and powdery mildews, grey mold, black rot, grapevine fanleaf virus and trunk diseases (namely GTDs). The interaction between grapevine and pathogens is relatively complex and linked to various pathogenicity factors including cell-wall-degrading enzymes (especially CAZymes) and phytotoxic secondary metabolites, growth regulators, effectors proteins, and fungal viruses.