Terroir 2004 banner
IVES 9 IVES Conference Series 9 Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Géoviticulture MCC system

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Géoviticulture MCC system

Abstract

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année. La région est placée sur climat viticole à variabilité intra-annuelle, qui correspond aux régions qui, sur des conditions climatiques naturelles, changent de classe de climat viticole en fonction de la période de l’année au cours de laquelle le raisin peut être produit. La méthodologie adoptée est celle du Système de Classification Climatique Multicritères Géoviticole (Système CCM Géoviticole) (Tonietto & Carbonneau, 2004), en utilisant les fonctionnalités de modulation des indices (indices homologues appliqués sur la phénologie locale des cépages). Les indices climatiques viticoles du Système (thermique, nycthermique et hydrique) ont été adaptés aux conditions biologiques du cépage Syrah de la région, qui présente un cycle moyen débourrement-récolte (d-r) de 4 mois. L’étude utilise une base de données climatiques journalières de la période 1976-2002, avec la simulation de 36 récoltes théoriques par an (une récolte théorique a chaque décade), soit un totale de 972 sur l’ensemble de la période étudiée. Ainsi, l’Indice Héliothermique (IH12d) à été calculé sur 4 mois tout au long de l’année. L’Indice de Fraîcheur des Nuits (IF3d) a été calculé sur les 3 décades précédentes la date théorique de récolte (période de maturation). La quantité de pluie en période de maturation (P3d) a également été prise en compte en fonction des effets sur l’incidence de pourriture. Les résultats ont permis de caractériser 3 périodes climatiques viticoles distincts dans l’année : Période “a” – conditions thermiques moins chaudes pendant le cycle d-r pour l’IH12d, conditions nycthermiques (IF3d) plus fraîches et très sec (P3d) en période de maturation ; Période “b” – climat intermédiaire entre la période “a” et “c” pour l’IF3d et l’IH12d et sec à très sec pour P3d (la période “b” peut être subdivisée en 2 sous-périodes : l’une que s’initie en sortant de la période chaude et humide “c”, avec une réserve hydrique utile au niveau du sol, et évolue avec la chute des températures ; et l’autre sous-période qui débute avec l’augmentation des températures et que finie juste avant la rentrée de la période humide “c”) ; Période “c” – Le plus chaud pour l’IF3d et l’IH12d et sub-humide pour P3d. Les résultats montrent que la production de raisin de cuve pour un même cépage présente des caractéristiques potentielles distinctes en fonction des périodes de production “a”, “b” et “c”. D’une façon générale, la période “c” est la plus susceptible a une maturité du raisin incomplète en fonction du risque de pourriture (pluie et température élevée), qui peuvent amener à une récolte avant la complète maturation du raisin. Déjà les périodes “a” et “b” sont les plus aptes a une bonne maturation du raisin. La période “a” est celle qui présente le moindre risque de pluie et des températures les plus fraîches, avec la possibilité du contrôle total de la disponibilité hydrique du sol par l’irrigation. La probabilité d’occurrence des indices climatiques à été caractérisé par décade et par quartile comme information d’aide à la décision (risque ou avantages) des périodes de production. Des études complémentaires, notamment l’estimation de la réserve hydrique potentielle (Indice de Sécheresse – IS) du sol seront développées. On peut conclure que le concept de climat viticole à variabilité intra-annuelle du Système CCM Géoviticole peut être utilisé comme élément de zonage pour l’établissement, dans un même vignoble, des périodes de l’année avec un potentiel climatique supérieur de production de raisin de cuve. Ce critère climatique va être utilisé dans le zonage intégré de la région, notamment avec les facteurs édaphiques.

The objective of this research is the viticultural climatic zoning of the production periods over the year in the São Francisco Valley, a Brazilian grape-growing region located in semi-arid tropical climate. In this region, the production can be spread over all months of the year. The region is situated in climate with intra-annual variability, that corresponds to the regions which, under natural climatic conditions, change the class of viticultural climate according to the period of the year during which the grape is produced. The methodology adopted is that of the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System) (Tonietto & Carbonneau, 2004), employing the modulation functions of the indices. The viticultural climatic indices of the System have been adapted to the biological conditions of the Syrah variety, which has an average cycle of 4 months from bud burst to harvest (d-r) in the region. The study is based on a daily climate database from 1976 through 2002, simulating 36 theoretic harvests per year (one theoretic harvest at every ten 10 days), amounting to a total of 972 harvests in the whole period covered by the study. In this way, the Heliothermal Index (HI12d) was calculated over 4 months throughout the year. The Cool Night Index (IF3d) was calculated over the 30 days that preceded the theoretic harvest (maturation period). The amount of rain (P3d) in the maturation period was equally been taken into account according to the potential effect of the incidence of bunch rotting. The results have allowed to distinguish 3 climatic viticultural periods during the year: Period “a” – less warm during d-r cycle (IH12d) and for night temperatures (IF3d) and very dry (P3d); Period “b” – intermediate climate between “a” and “c” period for IF3d and IH12d and dry to very dry for P3d (the period “b” can be subdivided into 2 sub-periods: one which starts with the end of the warm and sub-humid period “c”, with a useful water reserve of the soil, and evolves with the fall of the temperatures, and another which starts with the increase of the temperatures and finishes before the sub-humid period “c” returns); Period “c” – the warmest for the IH12d and IF3d, and sub-humid for P3d. The obtained results allow defining the periods “a” and “b”, even with different climatic viticultural potential, as being the most favorable for the production of grapes for wine. The probability of occurrence of the values of the climatic indices (climatic risk or advantages) was characterized at a ten-day level throughout the year. Other index to complement the study will be included, especially the potential water balance of the soil (dryness index – IS). It can be concluded that the concept of the viticultural climate with intra-annual variability of the Géovitivulture MCC System can be used as a zoning element for establishing, in the same vineyard, periods of the year with a higher climatic potential for the production of quality grapes for wine. This climatic criterion will be used in the integrated zoning of the region, especially with the edaphic factors.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Tonietto (1) and A.H. de C. Teixeira (2)

(1) Embrapa – Centre National de Recherche de la Vigne et du Vin – Cnpuv, Rua Livramento, 515 ; 95700-000 – Bento Gonçalves, Brésil
(2) Embrapa – Centre de Recherche du Tropique Semi-Aride – Cpatsa

Contact the author

Keywords

Tropical, intertropical, vin, raisin, qualité, climat avec variabilité intra-annuelle, zonage climatique, Système CCM Géoviticole 

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.

Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Aim: In this work, we have optimized a robust methodology for investigating possible correlations between the phytochemical profile of wine and the terroir (including the climate), considering the specific wine-growing area. In particular, the untargeted metabolomic and sensorial profiles of Gutturnio DOC commercial wines (both still and “frizzante” types) from different production areas in the Piacenza province were determined. The geographical areas taken into consideration for this study consisted in Val Tidone, Val Nure and Val d’Arda.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Use of multispectral satellite for monitoring vine water status in mediterranean areas

The development of new generations of multispectral satellites such as Sentinel-2 opens possibilities as to vine water status assessment (Cohen et al., 2019). Based on a three years field campaign, a model of Stem Water Potential (SWP) estimation on vine using four satellite bands in Red, Red-Edge, NIR and SWIR domains was developed (Laroche-Pinel et al., 2021). The model relies on SWP field measures done using a pressure chamber (Scholander et al., 1965), which is a common, robust and precise method to assess vine water status (Acevedo-Opazo et al., 2008). The model was mainly developed from from SWP measures on Syrah N (Laroche Pinel E., 2021).

A large scale monitoring was organized in different vineyards in the Mediterranean region in 2021. 10 varieties amongst the most represented in this area were monitored (Cabernet sauvignon N, Chardonnay B, Cinsault N, Grenache N, Merlot N, Mourvèdre N, Sauvignon B, Syrah N, Vermentino B, Viognier B). The model was used to produce water status maps from Sentinel-2 images, starting from the beginning of June (fruit set) up to September (harvest). The average estimated SWP for each vine was compared to actual field SWP measures done by wine growers or technicians during usual monitoring of irrigation programs. The correlations between mean estimated SWP and mean measured SWP were at the same level than expected by the model. (Laroche Pinel, 2021) The general SWP kinetics were comparable. The estimated SWP would have led to same irrigation decisions concerning the date of first irrigation in comparison with measured SWP.

Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., Guillaume, S. (2008). Is it possible to assess the spatial variability of vine water status? OENO One, 42(4), 203.
Cohen, Y., Gogumalla, P., Bahat, I., Netzer, Y., Ben-Gal, A., Lenski, I., … Helman, D. (2019). Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision agriculture ’19, The Netherlands: Wageningen Academic Publishers, pp. 445–451.
Laroche-Pinel, E., Duthoit, S., Albughdadi, M., Costard, A. D., Rousseau, J., Chéret, V., & Clenet, H. (2021). Towards vine water status monitoring on a large scale using sentinel-2 images. remote sensing, 13(9), 1837.
Laroche-Pinel,E. (2021). Suivi du statut hydrique de la vigne par télédétection hyper et multispectrale. Thèse INP Toulouse, France.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., & Hammel, H.T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.