Terroir 1996 banner
IVES 9 IVES Conference Series 9 “Gheo” per la vitivinicoltura: un progetto per la produzione dl vini dl alta qualità

“Gheo” per la vitivinicoltura: un progetto per la produzione dl vini dl alta qualità

Abstract

Il settore primario, ed in particolare quello agricolo, sta attraversando un periodo partico­larmente delicato. Sia gli aspetti della produzione che quelli della commercializzazione ven­gono infatti messi in discussione da nuovi indirizzi economici e tecnologici. Prioritaria è l’e­sigenza di disporre di prodotti la cui qualità sia globale cosi definita sia per le caratteristiche intrinseche del prodotto che per la compatibilità nei confronti dell’ambiente delle tecniche utilizzate per la sua produzione. Altrettanto importante è la tipicità del prodotto, ovvero la non riproducibilità in ambienti diversi delle stesse caratteristiche organolettiche, unica garanzia nei confronti di un mercato sempre più aperto. Le colture tipiche di alta qualità rap­presentano quindi il futuro per un’agricoltura che sarà sempre meno assistita.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

GIANNI BRACCINl (1), FABIO PRIMAVERA (2)

(1) CAR-TECH Firenze S.r.l. – 055601313 – Via di Coverciano, 11 – 50135 FIRENZE
(2) Via della Società Operaia, 3 – 52100 AREZZO

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

The sensory definition of the aging bouquet of red Bordeaux wines has been shown to be structured around seven main aromatic nuances: “undergrowth”, “spicy” “truffle”, “fresh red- and black-berry fruits”, “liquorice”, “mint”, and “toasted” (1). Some of these descriptors are also used to describe the aromatic notes of old Champagnes (2) suggesting common volatile compounds between these two types of wine.

Malolactic fermentation in wine production

What influence do these bacteria have on wines? What new bacteria are being studied to carry out this fermentation? Find below articles about malolactic fermentation published in our 3 media (OENO One, IVES Technical Reviews and IVES Conference Series). OENO One...

Intelligent use of ethanol for the direct quantitative determination of volatile compounds in spirit drinks

The quality of any alcoholic beverage depends on many parameters, such as cultivars, harvesting time, fermentation, distillation technology used, quality and type of wooden barrels (in case of matured drinks), etc.; however, the most important factor in their classification is content of volatile compounds.

Simultaneous determination of ethanol and methanol in wines using FTIR and PLS regression

Wine is a complex hydroalcoholic solution, with ethanol levels serving as a critical quality parameter.

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.