Terroir 1996 banner
IVES 9 IVES Conference Series 9 “Gheo” per la vitivinicoltura: un progetto per la produzione dl vini dl alta qualità

“Gheo” per la vitivinicoltura: un progetto per la produzione dl vini dl alta qualità

Abstract

Il settore primario, ed in particolare quello agricolo, sta attraversando un periodo partico­larmente delicato. Sia gli aspetti della produzione che quelli della commercializzazione ven­gono infatti messi in discussione da nuovi indirizzi economici e tecnologici. Prioritaria è l’e­sigenza di disporre di prodotti la cui qualità sia globale cosi definita sia per le caratteristiche intrinseche del prodotto che per la compatibilità nei confronti dell’ambiente delle tecniche utilizzate per la sua produzione. Altrettanto importante è la tipicità del prodotto, ovvero la non riproducibilità in ambienti diversi delle stesse caratteristiche organolettiche, unica garanzia nei confronti di un mercato sempre più aperto. Le colture tipiche di alta qualità rap­presentano quindi il futuro per un’agricoltura che sarà sempre meno assistita.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

GIANNI BRACCINl (1), FABIO PRIMAVERA (2)

(1) CAR-TECH Firenze S.r.l. – 055601313 – Via di Coverciano, 11 – 50135 FIRENZE
(2) Via della Società Operaia, 3 – 52100 AREZZO

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Crop water stress index as a tool to estimate vine water status

Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.

Functionality of different inter-stimulus rinse protocols for the sensory analysis of wildfire affected wines

From the effect of global climate change, wildfire occurrence during grape ripening has increased. These wildfires produce smoke that can carry organic compounds to a vineyard. These smoke compounds are adsorbed in the grape berry and result in wines with elevated levels of smoke-related phenols. These wines are described as having a smokey, burnt, and dirty aroma (Kristic et al, 2015). Not only are volatile phenols carried by smoke, but additionally glycoconjugate forms of these phenols are present as will. These have been found to have a large impact on the flavor of wines, being the cause of a lasting ashy aftertaste post consumption (Parker et al, 2012). When evaluating the sensory profile of these wines when tasted one after the other, there is an observed problem due to the lasting nature of these undesirable attributes and high level of carry-over from sample to sample. The aim of this work is to evaluate the extent this carryover occurs, along with the best sensory practices to mitigate its influence via different inter-stimulus rinse protocols.

Effect of potential crop on vine water constraint

It is important to quantify the effect of potential crop on vine water constraint in order to adapt vine-growing consulting and vine management to the Mediterranean climate conditions

Does treatment of grape juice with aspergillopepsin-i influence wine aroma?

Acid aspergillopepsins-i (ap-i) have been suggested for use in winemaking due to their ability to degrade proteins, which reduces haze formation and the necessity for bentonite to achieve protein stability. These endopeptidases cleave non-terminal amino acid bonds of proteins, resulting in their degradation.

Key odorants responsible for the sensory spaces defining the different aroma potentials of Grenache and Tempranillo grapes

There are yet many gaps in our knowledge about the aroma potential of winemaking grapes and its measurement. Trying to bring some light into this question, a new general strategy based on the accelerated hydrolysis of reconstituted phenolic and aromatic fractions (PAFs) extracted from grapes has been developed