terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Sensory properties: psychophysics, experimental economy, connections with neurosciences 9 Closure permeability: a key parameter for modulating the aroma of monovarietal white wines during bottle ageing

Closure permeability: a key parameter for modulating the aroma of monovarietal white wines during bottle ageing

Abstract

Bottle aging is crucial for wine quality, influencing its chemical and sensory properties [1]. Ideally, a phase of qualitative ageing enhances sensory attributes before a decline in quality occurs. Understanding the impact of oenological variables on these phases is a key challenge in modern winemaking. Oxygen plays a significant role in modulating reactions involving volatile and non-volatile compounds, affecting aroma evolution during storage [2]. Oxygen exposure during bottle aging is regulated by closure permeability, defined by the Oxygen Transmission Rate (OTR) and the Oxygen Initial Release (OIR), which contribute to the total oxygen supply [3].

From a sensory perspective, excessive oxygen exposure can lead to a loss of fruity and varietal aromas, causing oxidative spoilage. Conversely, insufficient oxygen ingress may result in the development of reduction characters over time [1]. Predicting a wine’s response to oxygen is complex due to various chemical and physical interactions. Generally, red wines require more oxygen during ageing, whereas white wines are more prone to oxidation. Micro-agglomerated cork stoppers with different OTRs offer a precise means of regulating oxygen ingress, but understanding how different wines respond to oxygen exposure is crucial for optimizing closure selection.

In 2020, a study was launched to examine the aging of four monovarietal white wines (Falanghina, Greco, Fiano, and Chardonnay) with closures featuring OTRs between 0.3 and 0.6 mg O2/year. Sensory analysis was conducted yearly, including free sorting tasks, liking tests, reduction/oxidation ratings, and odor profiling via the Rate-All-That-Apply (RATA) method. Additionally, free and total SO2 and total acetaldehyde levels were monitored.

Despite small OTR differences, results showed distinct sensory evolutions across wines. Over three years, no oxidative spoilage was observed. Higher OTRs enhanced fruitiness and liking, while lower OTRs intensified reduction characters, with significant differences among varieties. These findings highlight closures as a powerful tool to modulate wine aroma, tailored not only to the type of wine but also to the intended consumption timing.

References

[1] Ugliano, M. (2013). J. Agric. Food Chem., 61, 6125-6136.

[2] Silva, M. A., Julien, M., Jourdes, M., & Teissedre, P. L. (2011). Eur. Food Res. Technol., 233, 905-914.

[3] Pons, A., Lavigne, V., Thibon, C., Redon, P., Loisel, C., Dubourdieu, D., & Darriet, P. (2021). J. Agric. and Food Chem., 69, 9883-9894.

Publication date: June 5, 2025

Type: Oral communication

Authors

Maria Tiziana Lisanti1,*, Angelita Gambuti1, Luigi Picariello1, and Luigi Moio1

1 Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, viale Italia 60, 83100 Avellino, Italy

Contact the author*

Keywords

closures, oxygen transfer rate, sensory analysis, aroma

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Exploring microbial interactions between Saccharomyces cerevisiae and non-Saccharomyces yeast starters in vinification

Winemaking is a complex microbial process involving the co-existence and interactions of various microorganisms [1].

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

From varietal and terroir expression to off-odors: chemical background of wine aroma evolution during aging

Expression of sensory attributes that reflect the varietal and geographical origin of wines (aka terroir) is central to perceived wine quality and reputation of wine producing regions.

Comparison between non-Saccharomyces yeasts for the production of Nero d’Avola wine

Wine production with non-Saccharomyces yeasts is getting larger application due to the positive impact of these yeasts on wine composition. Previous studies showed notably differences in chemical composition of Merlot wines obtained with Torulaspora delbrueckii.

Influence of harvest time and withering length combination on reinforced Nebbiolo wines: phenolic composition, colour traits, and sensory profile

Sforzato di Valtellina DOCG is a reinforced dry red wine produced in the mountain area of Valtellina alpine valley (North Italy), using ‘Nebbiolo’ grapes that undergo a withering process. This process impacts on the grape composition due to a sugar concentration and changes in secondary metabolism influencing volatile organic compounds (VOCs) and polyphenols.