Terroir 1996 banner
IVES 9 IVES Conference Series 9 La pianificazione del paesaggio agrario vitivinicolo del basso Monferrato

La pianificazione del paesaggio agrario vitivinicolo del basso Monferrato

Abstract

Monferrato is a sub region of Piedmont featuring an endless series of hills which have been moulded through the centuries by laborious farming. Vineyards have always been the protagonists of Monferrato landscape. Asti vineyards have been well-known since Roman times and Pliny the Elder mentions them. Local farmers have played the role of great architects transforming this area with their gift for cultivation. Thanks to them excellent wines and harmonious landscapes form a perfect balance. Eighteenth- and nineteenth-century documents, such as land registers, give various proofs of a constantly well-tilled soil and well-disposed cultivations. Unfortunately, since 1950 the agricultural estates have been damaged by several economic and social factors which have caused a loss of identity and deterioration in the complex articulation of the historical landscape. The European Union by financing the uprooting of vineyards has favored further deterioration and abandonment of these areas. As a result the soil of high hills is exposed to such erosion that it might lead to the complete loss of any cultivation. From this extreme change arises the need for planning the landscape in order to be ready for new economic and commercial trends.
It is now essential to try and preserve historical forms of agriculture which have been accumulating technical knowledge and common culture. The aesthetic and figurative values of this kind of landscape can be fully assessed only if we understand the complexity of the factors which were involved in its growth. Thus agricultural planning in this area is quite a different matter from a garden: first of all it means realizing the need to integrate different factors establishing links between various points which can be relevant for future developments. After focusing the rules for correct restoration and management of agriculture on the hilly countryside, some solutions to the main problems have been devised and are being discussed. Three main hypotheses have been taken into account: a traditional-functional planning, a realistic though weak project and an experimental project, all of them related to the local resources and economic possibilities. New and different landscapes result from each choice, though each takes into account the overall situation. These three projects stem from a common source inasmuch as they share the awareness of respecting the “vocation” of the territory. Since the very beginnings of the history of agriculture, in Monferrato vineyards have been the optimum means of communication between farmers and nature and they are still the most suited to local resources. It is therefore advisable that similar territories maintain their own harmoniously conceived style. It is possible to renovate while still preserving the specific aspects of the land: only in such a way will the beauty of our landscapes not be lost.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

ALESSANDRO CARAMELLINO

Via Mazzucotelli 22 – 20138 Milano

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

Mannoproteins from oenological by-products as tartaric stabilization and color agents in white and red wines

Climate change is drastically modifying grape composition and wine quality. As consequence, must and wines are becoming unbalanced, with high sugar concentration, increased alcohol content, lower acidity, excessive astringency, color instability and also a rise in the incidence of tartaric instability is being showed.

Effect of pre-fermentative strategies on the polysaccharide composition of must and white wines

Among the macromolecules of enological interest in white wines, much attention has been paid to polysaccharides.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

During Champagne or sparkling wine tasting, gas-phase CO2 and volatile organic compounds invade the headspace above glasses [1], thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception [2]. Monitoring as accurately as possible the level of gas-phase CO2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO2 and a collection of various tasting parameters.