Terroir 1996 banner
IVES 9 IVES Conference Series 9 La pianificazione del paesaggio agrario vitivinicolo del basso Monferrato

La pianificazione del paesaggio agrario vitivinicolo del basso Monferrato

Abstract

Monferrato is a sub region of Piedmont featuring an endless series of hills which have been moulded through the centuries by laborious farming. Vineyards have always been the protagonists of Monferrato landscape. Asti vineyards have been well-known since Roman times and Pliny the Elder mentions them. Local farmers have played the role of great architects transforming this area with their gift for cultivation. Thanks to them excellent wines and harmonious landscapes form a perfect balance. Eighteenth- and nineteenth-century documents, such as land registers, give various proofs of a constantly well-tilled soil and well-disposed cultivations. Unfortunately, since 1950 the agricultural estates have been damaged by several economic and social factors which have caused a loss of identity and deterioration in the complex articulation of the historical landscape. The European Union by financing the uprooting of vineyards has favored further deterioration and abandonment of these areas. As a result the soil of high hills is exposed to such erosion that it might lead to the complete loss of any cultivation. From this extreme change arises the need for planning the landscape in order to be ready for new economic and commercial trends.
It is now essential to try and preserve historical forms of agriculture which have been accumulating technical knowledge and common culture. The aesthetic and figurative values of this kind of landscape can be fully assessed only if we understand the complexity of the factors which were involved in its growth. Thus agricultural planning in this area is quite a different matter from a garden: first of all it means realizing the need to integrate different factors establishing links between various points which can be relevant for future developments. After focusing the rules for correct restoration and management of agriculture on the hilly countryside, some solutions to the main problems have been devised and are being discussed. Three main hypotheses have been taken into account: a traditional-functional planning, a realistic though weak project and an experimental project, all of them related to the local resources and economic possibilities. New and different landscapes result from each choice, though each takes into account the overall situation. These three projects stem from a common source inasmuch as they share the awareness of respecting the “vocation” of the territory. Since the very beginnings of the history of agriculture, in Monferrato vineyards have been the optimum means of communication between farmers and nature and they are still the most suited to local resources. It is therefore advisable that similar territories maintain their own harmoniously conceived style. It is possible to renovate while still preserving the specific aspects of the land: only in such a way will the beauty of our landscapes not be lost.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

ALESSANDRO CARAMELLINO

Via Mazzucotelli 22 – 20138 Milano

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Proposal for the development of a framework for a globally relevant wine sector climate change adaptation strategy

Climate change is impacting wine production in all parts of the world in highly variable ways that may change the expression of terroir, from rapid loss of viability right through to highly beneficial aspects that increase suitability

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Climate projections over France wine-growing region and its potential impact on phenology

Climate change represents a major challenge for the French wine industry. Climatic conditions in French vineyards have already changed and will continue to evolve. One of the notable effects on grapevine is the advancing growing season. The aim of this study is to characterise the evolution of agroclimatic indicators (Huglin index, number of hot days, mean temperature, cumulative rainfall and number of rainy days during the growing season) at French wine-growing regions scale between 1980 and 2019 using gridded data (8 km resolution, SAFRAN) and for the middle of the 21th century (2046-2065) with 21 GCMs statistically debiased and downscaled at 8 km. A set of three phenological models were used to simulate the budburst (BRIN, Smoothed-Utah), flowering, veraison and theoretical maturity (GFV and GSR) stages for two grape varieties (Chardonnay and Cabernet-Sauvignon) over the whole period studied. All the French wine-growing regions show an increase in both temperatures during the growing season and Huglin index. This increase is accompanied by an advance in the simulated flowering (+3 to +9 days), veraison (+6 to +13 days) and theoretical maturity (+6 to +16 days) stages, which are more noticeable in the north-eastern part of France. The climate projections unanimously show, for all the GCMs considered, a clear increase in the Huglin index (+662 to 771 °C.days compared to the 1980-1999 period) and in the number of hot days (+5.6 to 22.6 days) in all the wine regions studied. Regarding rainfall, the expected evolution remains very uncertain due to the heterogeneity of the climates simulated by the 21 models. Only 4 regions out of 21 have a significant decrease in the number of rainy days during the growing season. The two budburst models show a strong divergence in the evolution of this stage with an average difference of 18 days between the two models on all grapevine regions. The theoretical maturity is the most impacted stage with a potential advance between 40 and 23 days according to wine-growing regions.

The problem of the increasing pH in sparkling wines caused by climate change: use of cationic exchange to correct it

In recent years, the increase in temperature and the changes in rainfall distribution caused by climate change are affecting vine and grape physiology and are consequently impacting wine composition and quality (Schultz, 2000; Jones et al., 2005).

Kinetic investigations of the Gewürztraminer volatile organic compounds and color at different temperatures and pHs

Gewürztraminer is a well-known wine famous for its aroma profile, which is characterized by rose petals, cloves, lychees, and other tropical fruit notes.