Terroir 1996 banner
IVES 9 IVES Conference Series 9 Proposta per un parco produttivo agrovitivinicolo dei “colli piacentini”

Proposta per un parco produttivo agrovitivinicolo dei “colli piacentini”

Abstract

Le Dipartimento di Progettazione dell ‘Architettura del Politecnico di Milano et l’Istituto di Viticoltura della Facoltà d’Agraria di Piacenza dell’Università Cattolica del Sacra Cuore, ont elaboré une proposition pour réaliser, dans l’aire de colline de la province de Piacenza, un Parco Produttivo Agrovitivinicolo. Le but est de favoriser une organisation économique et d’ambiance de l’espace rural de façon à mettre en relation le territoire avec ses ressources, le système des entreprises et les centres de recherche et de développement, afin de poursuivre de nouveaux objectifs plus avancés en termes de qualité de produit et de con­servation des agroécosystèmes. Il y a en effect de strictes relations entre modernisation de l’agriculture, sauvegarde du milieu et developpement intégré du territoire. La proposition du P.P.A. se rencontre positivement en la presence de spécifications locales adressées à l’innovation, comme les structures universitaires et de recherche, les entreprises agroviticoles conduites par de hauts niveaux d’entreprenariat, la présence d’un territoire, celui de la colline, à vocation caractéristiques pédologiques, morphologiques et clima­tiques particulières, à la culture du raisin et, par valeurs de paysage et de culture exeptionelles, au developpement du tourisme innovatif, comme l’éco-tourisme e le tourisme rural.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

FREDI DRUGMAN (1), MARIO FREGONl (2), GIACOMO MONTANARl (1), ALBERTO VERCESl (2)

(1) Dipartimento di Progettazione dell’Architettura del Politecnico di Milano, Via C. Golgi,20133 Milano, ltaly
(2) lstituto di Viticoltura della Facoltà di Agraria di Piacenza dell’U.C.S.C, Via Emilia Parmense, 8429100 Piacenza, ltaly

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Long-term drought resilience of traditional red grapevine varieties from a semi-arid region

In recent decades, the scarcity of water resources in agriculture in certain areas has been aggravated by climate change, which has caused an increase in temperatures, changes in rainfall patterns, as well as an increase in the frequency of extreme phenomena such as droughts and heat waves. Although the vine is considered a drought-tolerant specie, it has to satisfy important water requirements to complete its cycle, which coincides with the hottest and driest months. Achieving sustainable viticulture in this scenario requires high levels of efficiency in the use of water, a scarce resource whose use is expected to be severely restricted in the near future. In this regard, the use of drought-tolerant varieties that are able to maintain grape yield and quality could be an effective strategy to face this change. During three consecutive seasons (2018-2020) the behavior in rainfed regime of 13 traditional red grapevine varieties of the Spain central region was studied. These varieties were cultivated in a collection at Centro de Investigación de la Vid y el Vino de Castilla-La Mancha (IVICAM-IRIAF) located in Tomelloso (Castilla-La Mancha, Spain). Yield components (yield, mean bunch and berry weight, pruning weight), physicochemical parameters of the musts (brix degree, total acidity, pH) and some physiological parameters related with water stress during ripening period (δ13C, δ18O) were analysed. The application of different statistical techniques to the results showed the existence of significant differences between varieties in their response to stressful conditions. A few varieties highlighted for their high ability to adapt to drought, being able to maintain high yields due to their efficiency in the use of water. In addition, it was possible quantify to what extent climate can be a determinant in the δ18O of musts under severe water stress conditions.

To what extent does vine balance actually drive fruit composition?

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.

Remote sensing applications in viticulture: recent advances and new opportunities

Remote sensing applications in viticulture have been a research theme now for nearly two decades, becoming a valuable tool for vineyard management. Metrics produced using remotely sensed images of vineyards have yielded relationships with grape quality and yield that can help optimise vineyard performance

Influence of harvest time and withering length combination on reinforced Nebbiolo wines: phenolic composition, colour traits, and sensory profile

Sforzato di Valtellina DOCG is a reinforced dry red wine produced in the mountain area of Valtellina alpine valley (North Italy), using ‘Nebbiolo’ grapes that undergo a withering process. This process impacts on the grape composition due to a sugar concentration and changes in secondary metabolism influencing volatile organic compounds (VOCs) and polyphenols.

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.