Terroir 1996 banner
IVES 9 IVES Conference Series 9 Proposta per un parco produttivo agrovitivinicolo dei “colli piacentini”

Proposta per un parco produttivo agrovitivinicolo dei “colli piacentini”

Abstract

Le Dipartimento di Progettazione dell ‘Architettura del Politecnico di Milano et l’Istituto di Viticoltura della Facoltà d’Agraria di Piacenza dell’Università Cattolica del Sacra Cuore, ont elaboré une proposition pour réaliser, dans l’aire de colline de la province de Piacenza, un Parco Produttivo Agrovitivinicolo. Le but est de favoriser une organisation économique et d’ambiance de l’espace rural de façon à mettre en relation le territoire avec ses ressources, le système des entreprises et les centres de recherche et de développement, afin de poursuivre de nouveaux objectifs plus avancés en termes de qualité de produit et de con­servation des agroécosystèmes. Il y a en effect de strictes relations entre modernisation de l’agriculture, sauvegarde du milieu et developpement intégré du territoire. La proposition du P.P.A. se rencontre positivement en la presence de spécifications locales adressées à l’innovation, comme les structures universitaires et de recherche, les entreprises agroviticoles conduites par de hauts niveaux d’entreprenariat, la présence d’un territoire, celui de la colline, à vocation caractéristiques pédologiques, morphologiques et clima­tiques particulières, à la culture du raisin et, par valeurs de paysage et de culture exeptionelles, au developpement du tourisme innovatif, comme l’éco-tourisme e le tourisme rural.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

FREDI DRUGMAN (1), MARIO FREGONl (2), GIACOMO MONTANARl (1), ALBERTO VERCESl (2)

(1) Dipartimento di Progettazione dell’Architettura del Politecnico di Milano, Via C. Golgi,20133 Milano, ltaly
(2) lstituto di Viticoltura della Facoltà di Agraria di Piacenza dell’U.C.S.C, Via Emilia Parmense, 8429100 Piacenza, ltaly

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Aroma chemical markers of Durello wines from different vintages and origins: a case study

Wines expressing sensory characters that are representative of their varietal and geographical origins are highly sought after in today’s market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved. This study investigated aroma chemical and sensory diversity of Durello DOC white

Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Despite its relevance for wine quality and stability, red wine colloids have not still been
sufficiently investigated, an occurrence due to the lack of suitable analytical techniques to study them as they are present in wine.

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.

Outline for the définition of “Terroirs Viticoles application to the area of El AIjarafe (Seville, Spain)

The grapes producing and wine making regions are différent in their use of agricultural, industrial or agroindustrial means. These means are quite often very original and/or specialised; and lately are also quite competitive. Such means are being defined with increased accuracy in the delimitation and definition of its characteristics (Paneque et al., 1996 a). Human action together with other Elements and Agents involved in the vine growing production (Reyner, 1989) over these means lead to agronomic systems with important characteristics. Finally, the transformation of the vine growing production, through different technologies (Fleet, 1992), results in the creation of products with a different acceptance and economical value in the market.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.