Terroir 1996 banner
IVES 9 IVES Conference Series 9 Proposta per un parco produttivo agrovitivinicolo dei “colli piacentini”

Proposta per un parco produttivo agrovitivinicolo dei “colli piacentini”

Abstract

Le Dipartimento di Progettazione dell ‘Architettura del Politecnico di Milano et l’Istituto di Viticoltura della Facoltà d’Agraria di Piacenza dell’Università Cattolica del Sacra Cuore, ont elaboré une proposition pour réaliser, dans l’aire de colline de la province de Piacenza, un Parco Produttivo Agrovitivinicolo. Le but est de favoriser une organisation économique et d’ambiance de l’espace rural de façon à mettre en relation le territoire avec ses ressources, le système des entreprises et les centres de recherche et de développement, afin de poursuivre de nouveaux objectifs plus avancés en termes de qualité de produit et de con­servation des agroécosystèmes. Il y a en effect de strictes relations entre modernisation de l’agriculture, sauvegarde du milieu et developpement intégré du territoire. La proposition du P.P.A. se rencontre positivement en la presence de spécifications locales adressées à l’innovation, comme les structures universitaires et de recherche, les entreprises agroviticoles conduites par de hauts niveaux d’entreprenariat, la présence d’un territoire, celui de la colline, à vocation caractéristiques pédologiques, morphologiques et clima­tiques particulières, à la culture du raisin et, par valeurs de paysage et de culture exeptionelles, au developpement du tourisme innovatif, comme l’éco-tourisme e le tourisme rural.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

FREDI DRUGMAN (1), MARIO FREGONl (2), GIACOMO MONTANARl (1), ALBERTO VERCESl (2)

(1) Dipartimento di Progettazione dell’Architettura del Politecnico di Milano, Via C. Golgi,20133 Milano, ltaly
(2) lstituto di Viticoltura della Facoltà di Agraria di Piacenza dell’U.C.S.C, Via Emilia Parmense, 8429100 Piacenza, ltaly

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine.

Using open source software in viticultural research

Many high quality Open Source scientific applications have been available for a long time. Some of them have proved to be particularly useful for carrying out the usual activities involved in viticultural research projects, such as statistical analyses (including spatial analyses), GIS work, database management (possibly integrated with statistical and spatial analysis) and even “low-level” often highly time-consuming activities (e.g. repetitive task on text files).

Mapping intra-plot topsoil diversity of Burgundy vineyards (Aloxe-Corton, France) from very high spatial resolution (VHSR) images

In this work, we present a method based on very high spatial resolution (VHSR) aerial images acquired in the visible domain and that map soil surface diversity at the hillslope