Terroir 1996 banner
IVES 9 IVES Conference Series 9 Analyse de la perception du terroir et de sa valorisation par les viticulteurs de l’Anjou

Analyse de la perception du terroir et de sa valorisation par les viticulteurs de l’Anjou

Abstract

An integrated terroir characterization is currently realized in the French northern vineyard: “Anjou”. The concept of Basic Terroir Unit (B.T.U.) and its associated ground model “Rock, Alteration, Alterite” are used in this characterization. This work is coupled to a viticultural survey, based on parcels. These two approaches allow an analysis of the degree of perception of terroir and its valorization by vine growers. This analysis is realized at two scales: the ground model “Rock, Alteration, Alterite” applied in the whole study area and the B. T. U. for the both main geological systems: the metagrauwacke of the brioverian period and the green to grey sandstone schist of the ordovician-devonian period.
At the ground model scale, the vine growers have well differentiated the three environments by mesoclimatic (temperature of air, risk of frost), pedoclimatic (temperature and humidity of soil) and pedologic criteria. They have perceived also influences of the environment type on the behavior of the vine and integrated them in their viticultural and oenological practices. The analysis at B.T.U. scale, confirms the pertinence of the ground model “Rock, Alteration, Alterite” on the perception of pedoclimatic and pedologic characteristics and an important influence of the geological system on the mesoclimate of the parcel and on the vine behavior.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

LYDIE THÉLIER-HUCHÉ (1), E. JOURDREN (2), R. MORLAT (2)

(1) SAGAH, unité mixte INRA-INH, BP 57, 49071 Beaucouzé Cedex, France
(2) INRA, Unité de Recherches sur la Vigne et le Vin, BP 57, 49071 Beaucouzé Cedex, France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Relationships between berry quality and climatic variability in grapevine cultivars from Piedmont

A major topic in viticultural research is the analysis of the relationships between climate on one side, and grape and wine quality on the other. It is well known that climatic conditions

Digital PCR: a tool for the early detection of brettanomyces in wine

Brettanomyces bruxellensis is found in various ecological niches, but particularly in fermentative processes: beer, kombucha, cider and wine. In the oenological sector, this yeast is undesirable, as it can produce ethyl phenols, thus altering wine quality. These compounds are characterized by stable or horse-sweat aromas, unpleasant for consumers.

Changes in wine secondary metabolites composition by the timing of inoculation with lactic acid bacteria: impact on wine aroma

For the first time, it was established that the timing of inoculation with LAB could significantly impact the concentration of many secondary metabolites leading to significant aromatic changes. From studied compounds, the most influenced were esters and diacetyl.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods.