Terroir 1996 banner
IVES 9 IVES Conference Series 9 Caractérisation du terroir en Espagne : méthodologie de l’évaluation et de la validation

Caractérisation du terroir en Espagne : méthodologie de l’évaluation et de la validation

Abstract

In recent years, there has been a growing interest in characterizing the ecological environment of vineyard production, and the growing need to delimit and characterize with precision the different homogeneous viticultural units. This has allowed the development of new studies which have as their objective the Vineyard Zoning. The delimitation and characterization of wine-growing areas poses specific problems in Spain, not only linked to the specific characteristics of the territory, but also to the size, distribution and index of viticultural occupation in the designations of origin.

In this work we try to describe the methodology that has been applied to the Denomination of Origin Ribera del Duero (325,000 Ha and 12,000 Ha of vineyard) and to the Qualified DO Rioja (300,000 Ha and 50,000 Ha of vineyard) with the objective of systematically and analytically defining homogeneous units, in which the viticultural vocation can be expressed quantitatively with the resulting comparative discussions (Sotés and Gómez-Miguel, 1994, 1997).

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

V. SOTES, V. GOMEZ-MIGUEL, P. GOMEZ-SANCHEZ

Departments of Phytotechnics and Edaphology of the ETS of Agricultural Engineers. Polytechnic University of Madrid Avda. Complutense s/n. 28040-Madrid

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

A.O.C. taureau de Camargue

A.O.C. réservée aux viandes fraîches de bovins mâles ou femelles, nés, élevés et abattus dans une aire géographique définie (voir carte)

Effects of fast dehydration at low temperature and relative humidity on the phenolic composition of Nebbiolo grapes

Grape postharvest dehydration is a widely used technique for the special wines production, where genetic features, ripeness degree and environmental factors strongly influence the metabolic processes [1].

Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Today’s viticulture faces a considerable challenge dealing with fungal diseases and limitations on the use of plant protection products (PPP) have increased the pressure to find more sustainable alternatives. One strategy may be the development and cultivation of disease-resistant grapevine varieties (PIWI) that could maintain crop productivity and quality while reducing dependence on PPP. In this work a set of 9 PIWI varieties (5 white and 4 red) deploying genes for resistance to powdery and downy mildew were evaluated in two consecutive years in Valdegón, La Rioja, with Tempranillo and Viura as controls. The objective was to correlate agronomic performance and disease incidence with the presence of disease resistance genes in two different seasons: with (2023) and without disease pressure (2022).

Monitoring the establishment of a synthetic microbial community with a potential biocontrol activity against grapevine downy mildew using a microfluidic qPCR chip

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is responsible for significant economic losses each year and for a large proportion of the fungicides used in viticulture.