Terroir 1996 banner
IVES 9 IVES Conference Series 9 Caractérisation du terroir en Espagne : méthodologie de l’évaluation et de la validation

Caractérisation du terroir en Espagne : méthodologie de l’évaluation et de la validation

Abstract

In recent years, there has been a growing interest in characterizing the ecological environment of vineyard production, and the growing need to delimit and characterize with precision the different homogeneous viticultural units. This has allowed the development of new studies which have as their objective the Vineyard Zoning. The delimitation and characterization of wine-growing areas poses specific problems in Spain, not only linked to the specific characteristics of the territory, but also to the size, distribution and index of viticultural occupation in the designations of origin.

In this work we try to describe the methodology that has been applied to the Denomination of Origin Ribera del Duero (325,000 Ha and 12,000 Ha of vineyard) and to the Qualified DO Rioja (300,000 Ha and 50,000 Ha of vineyard) with the objective of systematically and analytically defining homogeneous units, in which the viticultural vocation can be expressed quantitatively with the resulting comparative discussions (Sotés and Gómez-Miguel, 1994, 1997).

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

V. SOTES, V. GOMEZ-MIGUEL, P. GOMEZ-SANCHEZ

Departments of Phytotechnics and Edaphology of the ETS of Agricultural Engineers. Polytechnic University of Madrid Avda. Complutense s/n. 28040-Madrid

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Reconnaissance des vins de terroir par les consommateurs

Approaching the notion of terroir wines at the level of consumption poses a problem due to the absence of a regulatory definition of the term terroir, which is not taken up either at Community level or at national level (the Consumer Code in particular does not define not the land). However, whatever definition is adopted for the terroir, we can retain at the consumer level an identification of the terroir through the different geographical mentions appearing on the labels or on the shelves of the wine shelf.

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.

Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

The aroma of wine is one of the most important determinants of quality as it strongly influences the consumer’s acceptance or rejection. Among the thousands of molecules comprising the wine aroma, sulfur-containing compounds can be considered as a “double-edged sword”: some of them, deriving from varietal precursors provide fruity pleasant aromas, while other ones, produced by yeast metabolism are related to “unpleasant” aromas

Implications of herbicide, cultivation or cover crop under-vine soil management on the belowground microbiote

Soil management through cover crops in the lines of the vineyards is a common practice in viticulture, since it improves the characteristics of the soil. It has been shown that the cover crops can influence the cycle of nutrients, promote infiltration, decrease erosion, and enhance the soil microbiota biodiversity improving the grapevines. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in hot climates. The use of cover crops under the vines might be a plausible alternative to the use of herbicides or cultivation, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status and belowground microbial communities.

Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. In this context, this yeast species uses alcoholic fermentation to convert sugars from the grape must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum theoretical yield of conversion. Moreover, S. cerevisiae is also known for its great genetic diversity and plasticity that is directly related to its living environment, natural or technological and therefore to domestication. This leads to a great phenotypic diversity of metabolites production.