Terroir 1996 banner
IVES 9 IVES Conference Series 9 Différenciation mésoclimatique des terroirs alsaciens et relation avec les paramètres du milieu naturel

Différenciation mésoclimatique des terroirs alsaciens et relation avec les paramètres du milieu naturel

Abstract

The influence of climatic conditions on the development of the vine and on the quality of the wines no longer needs to be demonstrated: at the scale of the vineyard, by the regional climatic characteristics, determining on this scale the viticultural potentialities (Huglin, 1978; Branas, 1946; Riou et al ., 1994); but also on a local scale, at the level of the basic terroir unit (Morlat, 1989), by the landscape differentiation of the natural environment inducing climatic variability within the same vineyard, and partly explaining differences in functioning of the vine, in connection with the processes of maturation and the quality of the wine (Becker, 1977 and 1984; Morlat, 1989 and Lebon, 1993a). According to these authors, the climatic diversity in a wine region constitutes in addition to the edaphic component, an important component of characterization of the Basic Terroir Units (UTB).

Several authors have described spatial climatic variability (Choisnel, 1987; Godart, 1949). Depending on the scale of investigation, they distinguish the macroclimate or regional climate, then the topoclimate resulting from topographic variability and finally the microclimate corresponding to the climate of the plant on the scale of the plot. The concept of mesoclimate, or local climate, is very close to topoclimate. It designates the climate resulting from the spatial differentiation of the regional climate, induced by the variability of the natural environment defining the landscape (Scaeta, 1935 and Godart, 1949).

The influence of topographic parameters; more specifically the declivity and orientation of the slope on solar radiation and on the distribution of air temperatures, have been the subject of numerous studies (Seltzer, 1935; Godart, 1949; Nigond, 1968). More recently, taking into account the type of weather (radiative or overcast) has proven to be important to better analyze and understand the processes of nocturnal thermal differentiation at the mesoclimatic scale (Geiger, 1980; Endlicher, 1980; Paul, 1980). . Erpicum in 1980, thus leads to a descriptive schematization of nocturnal thermal variability in two distinct environments of valley and plateau in Upper Belgium, according to the main types of regional weather.

At this scale of investigation, the advective term is an important parameter to take into account. Ventilation is highly dependent on the quantity and height of the surrounding masks. These can be topographic, vegetal or anthropic (Guyot, 1963). Thus, the analysis of the landscape is necessary during the integrated characterization of the terroirs (Morlat, 1989 and Jacquet et al ., 1995). This work defines simple landscape descriptors such as for example the Landscape Openness Index (LO.P.), making it possible to characterize mesoclimatic differences and lead to a cartographic representation of the landscape (Lebon, 1993b). Based on the spatial variability of global radiation, wind speed and air temperature recorded at the UTB scale of the Alsatian vineyard, the communication proposes a hierarchy of the parameters of the landscape environment generating such differences. climatic.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

V. Dumas (1), E. Lebon (2), R. Morlat (3)

(1) INRA Agronomy Laboratory, Colmar
28, rue d’Henlisheim BP 507, 68021 Colmar cedex
(2) INRA/ENSAM, GAP Viticulture Laboratory
2, place Viala, 34060 Montpellier cedex
(3) INRA, URVV, Angers
42 rue Georges Morel , 49071 Beaucouze

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Soil monoliths, soil variability and terroir

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.  

Characterizing the molecular basis of the differences in aromatic precursors found in commercial clones of Vitis vinifera cv. Tannat

Uruguay is known for the production of Tannat wines, which is a neutral variety from an aroma point of view, but capable of providing aromatic precursors that are of interest in the production of wines for ageing. The main aromatic precursors present are glycosidic compounds and carotenoids. The contribution of carotenoid degradation by-products such as norisoprenoids to wine aroma is fundamental, as they are associated with pleasant aroma descriptors and very low olfactory perception thresholds. Several factors have been shown to influence carotenoid concentrations in grapes, such as cultivar, climatic conditions, viticultural region, plant water status, exposure to sunlight and ripening stage.

Anthropogenic intervention in shaping Terroir in a California Pinot noir vineyard

In many vineyards optimal parcel size exceeds the geospatial complexity that exists in soils and topographic features that influence hydrological properties, sunlight interception and soil depth and texture (available water capacity).

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.