Terroir 1996 banner
IVES 9 IVES Conference Series 9 Différenciation mésoclimatique des terroirs alsaciens et relation avec les paramètres du milieu naturel

Différenciation mésoclimatique des terroirs alsaciens et relation avec les paramètres du milieu naturel

Abstract

The influence of climatic conditions on the development of the vine and on the quality of the wines no longer needs to be demonstrated: at the scale of the vineyard, by the regional climatic characteristics, determining on this scale the viticultural potentialities (Huglin, 1978; Branas, 1946; Riou et al ., 1994); but also on a local scale, at the level of the basic terroir unit (Morlat, 1989), by the landscape differentiation of the natural environment inducing climatic variability within the same vineyard, and partly explaining differences in functioning of the vine, in connection with the processes of maturation and the quality of the wine (Becker, 1977 and 1984; Morlat, 1989 and Lebon, 1993a). According to these authors, the climatic diversity in a wine region constitutes in addition to the edaphic component, an important component of characterization of the Basic Terroir Units (UTB).

Several authors have described spatial climatic variability (Choisnel, 1987; Godart, 1949). Depending on the scale of investigation, they distinguish the macroclimate or regional climate, then the topoclimate resulting from topographic variability and finally the microclimate corresponding to the climate of the plant on the scale of the plot. The concept of mesoclimate, or local climate, is very close to topoclimate. It designates the climate resulting from the spatial differentiation of the regional climate, induced by the variability of the natural environment defining the landscape (Scaeta, 1935 and Godart, 1949).

The influence of topographic parameters; more specifically the declivity and orientation of the slope on solar radiation and on the distribution of air temperatures, have been the subject of numerous studies (Seltzer, 1935; Godart, 1949; Nigond, 1968). More recently, taking into account the type of weather (radiative or overcast) has proven to be important to better analyze and understand the processes of nocturnal thermal differentiation at the mesoclimatic scale (Geiger, 1980; Endlicher, 1980; Paul, 1980). . Erpicum in 1980, thus leads to a descriptive schematization of nocturnal thermal variability in two distinct environments of valley and plateau in Upper Belgium, according to the main types of regional weather.

At this scale of investigation, the advective term is an important parameter to take into account. Ventilation is highly dependent on the quantity and height of the surrounding masks. These can be topographic, vegetal or anthropic (Guyot, 1963). Thus, the analysis of the landscape is necessary during the integrated characterization of the terroirs (Morlat, 1989 and Jacquet et al ., 1995). This work defines simple landscape descriptors such as for example the Landscape Openness Index (LO.P.), making it possible to characterize mesoclimatic differences and lead to a cartographic representation of the landscape (Lebon, 1993b). Based on the spatial variability of global radiation, wind speed and air temperature recorded at the UTB scale of the Alsatian vineyard, the communication proposes a hierarchy of the parameters of the landscape environment generating such differences. climatic.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

V. Dumas (1), E. Lebon (2), R. Morlat (3)

(1) INRA Agronomy Laboratory, Colmar
28, rue d’Henlisheim BP 507, 68021 Colmar cedex
(2) INRA/ENSAM, GAP Viticulture Laboratory
2, place Viala, 34060 Montpellier cedex
(3) INRA, URVV, Angers
42 rue Georges Morel , 49071 Beaucouze

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Red wine astringency: evolution of tribological parameters during different harvest dates

Astringency is a specific oral sensation dominated by dryness and puckering feeling and is one of the leading quality factors for red wines, as well as some fruit products

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.

New acacia gums fractions: how their features affect the foamability of sparkling base wines?

When sparkling wine is served, the first attribute perceived is foam1. Bentonite is usually added to wine in order to cause particle flocculation

Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

As the frequency and intensity of drought events increase, understanding the mechanisms of plant resilience to water deficit is crucial. To maintain an appropriate plant yield, a common practice is the application of high amounts of fertilizers with negative environmental impacts. The single and combined effect of water deficit and nutrient availability, namely nitrogen (N) and potassium (K), in Vitis Vinifera L. cv. Cabernet Sauvignon and Grenache was evaluated. Two-year-old grapevine plants grafted on SO4 rootstock were transferred in pots under semi-environmental conditions. During the growing season, plants were either maintained well-watered (100% ETc) or subjected to a controlled water deficit irrigation (33% ETc).

Tracing glycosidically-bound smoke taint markers from grape to wine

The increasing frequency of wildfires on the West Coast of the USA is seen as a significant risk for the grape and wine industry. Research has shown that perceived smoke impact in wines correlates with increases in volatile phenols (VPs) in grapes exposed to fresh smoke.