Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

Abstract

AIM: In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles. During late ripening, Shiraz mesocarp cells die within the central region of the berry. The cessation of K+ import may be a contributing factor to this loss in cell vitality. Many K+ trans-membrane transporters and channels are regulated by the membrane voltage (Vm). We thus measured trans-membrane voltage (Vm) and trans-tissue voltages (Vt) in the mesocarp during Shiraz berry development.

METHODS: Vm measurement Shiraz berries, grown in Coombe vineyard at the University of Adelaide, were sampled weekly from the completion of véraison to the late-ripening stage. To assess Vm, the microelectrode was inserted through the berry skin and into mesocarp. During injection, voltage signals and the corresponding depths of the micropipette tip were recorded. Vt measurement The Vt was measured by a similar method described above without micropipette injection. A small piece of skin was removed, allowing the measurement of Vt from the pedicel to the mesocarp surface. Living berries and dead berries from véraison and late-ripening stage were used. Dead berries were measured after freezing overnight followed by thawing.

RESULTS: Vm The voltages became less negative with increasing tissue depth. This may be attributed to the more severe hypoxia within deeper regions of the berry2. Voltage responses were detected in both living berries and dead berries in the late-ripening stage, with similar profiles. This indicates that other structures or factors contributed to the voltage detected by this method. Vt In living berries, the Vt values were more negative in véraison berries than those in late-ripening berries. This trend was not observed in dead berries. There was no significant difference between the Vt values measured from living berries and dead berries in late-ripening stage.

CONCLUSIONS

The uneven distribution of the Vm between berry compartments may be correlated with oxygen concentration, which could impact on K+ transport within berries. The declined Vm and Vt in the late ripening berries could be associated with the cessation of K+ import into berries.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yin Liu 

National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia,Suzy ROGIERS (New South Wales Department of Primary Industries, Wagga Wagga, NSW 2678, Australia) Leigh SCHMIDTKE (National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia) Stephen TYERMAN (School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia)

Contact the author

Keywords

grape berry ripening, microelectrode, voltage, mesocarp

Citation

Related articles…

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Application of ultrasonic and refractometric measurements in enological samples and related model solutions

AIM: The refractive index is a basic optical property of materials and a key tool for the determination of major components in musts, such as sugars

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

Vine phenology and climate in Bordeaux, since the beginning of the XIXth century

We analyze the effects of climate (temperature and pluviometry) on the phenologic stages of the vine (débourrement, flowering, ripening and grape harvest). We rebuilt time series starting from the beginning of the XIXth century for the Medoc and the area of Bordeaux, data very seldom mobilized by researchers.