Terroir 1996 banner
IVES 9 IVES Conference Series 9 Différenciation mésoclimatique des terroirs alsaciens et relation avec les paramètres du milieu naturel

Différenciation mésoclimatique des terroirs alsaciens et relation avec les paramètres du milieu naturel

Abstract

The influence of climatic conditions on the development of the vine and on the quality of the wines no longer needs to be demonstrated: at the scale of the vineyard, by the regional climatic characteristics, determining on this scale the viticultural potentialities (Huglin, 1978; Branas, 1946; Riou et al ., 1994); but also on a local scale, at the level of the basic terroir unit (Morlat, 1989), by the landscape differentiation of the natural environment inducing climatic variability within the same vineyard, and partly explaining differences in functioning of the vine, in connection with the processes of maturation and the quality of the wine (Becker, 1977 and 1984; Morlat, 1989 and Lebon, 1993a). According to these authors, the climatic diversity in a wine region constitutes in addition to the edaphic component, an important component of characterization of the Basic Terroir Units (UTB).

Several authors have described spatial climatic variability (Choisnel, 1987; Godart, 1949). Depending on the scale of investigation, they distinguish the macroclimate or regional climate, then the topoclimate resulting from topographic variability and finally the microclimate corresponding to the climate of the plant on the scale of the plot. The concept of mesoclimate, or local climate, is very close to topoclimate. It designates the climate resulting from the spatial differentiation of the regional climate, induced by the variability of the natural environment defining the landscape (Scaeta, 1935 and Godart, 1949).

The influence of topographic parameters; more specifically the declivity and orientation of the slope on solar radiation and on the distribution of air temperatures, have been the subject of numerous studies (Seltzer, 1935; Godart, 1949; Nigond, 1968). More recently, taking into account the type of weather (radiative or overcast) has proven to be important to better analyze and understand the processes of nocturnal thermal differentiation at the mesoclimatic scale (Geiger, 1980; Endlicher, 1980; Paul, 1980). . Erpicum in 1980, thus leads to a descriptive schematization of nocturnal thermal variability in two distinct environments of valley and plateau in Upper Belgium, according to the main types of regional weather.

At this scale of investigation, the advective term is an important parameter to take into account. Ventilation is highly dependent on the quantity and height of the surrounding masks. These can be topographic, vegetal or anthropic (Guyot, 1963). Thus, the analysis of the landscape is necessary during the integrated characterization of the terroirs (Morlat, 1989 and Jacquet et al ., 1995). This work defines simple landscape descriptors such as for example the Landscape Openness Index (LO.P.), making it possible to characterize mesoclimatic differences and lead to a cartographic representation of the landscape (Lebon, 1993b). Based on the spatial variability of global radiation, wind speed and air temperature recorded at the UTB scale of the Alsatian vineyard, the communication proposes a hierarchy of the parameters of the landscape environment generating such differences. climatic.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

V. Dumas (1), E. Lebon (2), R. Morlat (3)

(1) INRA Agronomy Laboratory, Colmar
28, rue d’Henlisheim BP 507, 68021 Colmar cedex
(2) INRA/ENSAM, GAP Viticulture Laboratory
2, place Viala, 34060 Montpellier cedex
(3) INRA, URVV, Angers
42 rue Georges Morel , 49071 Beaucouze

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

Leaf vine content in nutrients and trace elements in La Mancha (Spain) soils: influence of the rootstock

The use of rootstock of American origin has been the classic method of fighting against Phylloxera for more than 100 years. For this reason, it is interesting to establish if different rootstock modifies nutrient composition as well as trace elements content that could be important for determining the traceability of the vine products. A survey of four classic rootstocks (110-Richter, SO4, FERCAL and 1103-Paulsen) and four new ones (M1, M2, M3 and M4) provided by Agromillora Iberia. S.L.U., all of them grafted with the Tempranillo variety, has been carried out during 2019. The eight rootstocks were planted in pots of 500 cc, on three soils with very different characteristics from Castilla-La Mancha (Spain). In the month of July, the leaves were collected and dried in a forced air oven for seven days at 40ºC. Then, the samples were prepared for the analysis determination, carried out by X-Ray fluorescence spectrometry. The results obtained showed that in the case of content in mineral elements in leaf, separated by soil type, we can report the importance of few elements such as Si, Fe, Pb and, especially, Sr. The rootstock does not influence the composition of the vine leaf for the studied elements that are the most important in determining the geochemical footprint of the soil. The influence of the soil can be discriminated according to some elements such as Fe, Pb, Si and, especially, Sr.

The developement of vineyard zonation and demarcation in South Africa

L’histoire de viticulture de l’Afrique du Sud embrasse 340 ans, et a commencé, à la province du Cap, où les colonisateurs hollandais ont planté les premières vignes. L’arrivée des Huguenots français en 1688 a avancé, le développement.

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

Les terroirs viticoles ont une histoire

The historian starts from a scientific, rigorous and recent definition of the wine-growing region. “A viticultural terroir is made up of several homogeneous units: geological and pedological elements (texture,
grain size, thickness, mineralogical nature, chemical components), geomorphological (altitude, slope, exposure), climatological (rainfall, temperature, insolation)”. Absent from this definition, the man is fortunately reintroduced a little further. By associating viticulture and winemaking, it forms a “couple” with the terroir and this couple.