Terroir 1996 banner
IVES 9 IVES Conference Series 9 Eléments importants d’une méthodologie de caractérisation des facteurs naturels du terroir, en relation avec la réponse de la vigne à travers le vin

Eléments importants d’une méthodologie de caractérisation des facteurs naturels du terroir, en relation avec la réponse de la vigne à travers le vin

Abstract

The French viticultural appellation areas are the result of an empirical, historical and evolutionary selection which, generally, has consecrated a match between natural factors, grape varieties and viti-vinicultural practices. The notion of terroir is the main basis of the Appellation d’Origine Contrôlée in viticulture. It is based on the one hand on privileged natural factors and on the other hand on the know-how of the winegrowers; the whole allowing the production of a wine endowed with an authenticity and a sensory typicity. Wine-growing practices evolve according to progress in viticulture and oenology, while the natural factors of the terroir are much more stable, with the exception of the vintage. They therefore represent a fundamental pillar of the identity of an appellation vineyard. Faced with a wine market that is globalizing and an evolution of the consumer, the “terroir” factor takes on a new dimension, becoming an important commercial vector for many vineyards.

Scientific approaches to this theme have been relatively limited, due to the complexity of the problem concerning the variables to be studied, their chain of influence and the overall response of the vine to the terroir, through wine (Riou et al., 1995 ). An AOC most often applies to a wine-growing region whose surface area is sufficient for the expression, in most cases, of a large-scale spatial diversity of the natural environment (terroir units) which can lead to significant differences in the kind of wine..

An economic valuation of this factor of production therefore requires a method that can easily reveal and identify the units of terroir of a region, but also give them a spatial dimension, to allow a concrete use by the winegrowers, at the level of wine and agro-viticultural techniques.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

R. MORLAT

I.N.R.A. U.R.V.V.
42, rue Georges Morel. 49071 Angers. France

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).

“Terroir” and climate change in Franconia / Germany

Franconia which is a “cool climate” winegrowing region is well known for its fruity white wines. The most common grape cultivars are Silvaner and Mueller-Thurgau.

Dimethyl sulfide transfer through wine closures during bottle aging: implications for wine aroma management

Dimethyl sulfide (DMS) is a volatile sulfur compound with a complex role in wine aroma, contributing both desirable and undesirable sensory characteristics depending on its concentration (1).

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones.

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.