Terroir 1996 banner
IVES 9 IVES Conference Series 9 Eléments importants d’une méthodologie de caractérisation des facteurs naturels du terroir, en relation avec la réponse de la vigne à travers le vin

Eléments importants d’une méthodologie de caractérisation des facteurs naturels du terroir, en relation avec la réponse de la vigne à travers le vin

Abstract

The French viticultural appellation areas are the result of an empirical, historical and evolutionary selection which, generally, has consecrated a match between natural factors, grape varieties and viti-vinicultural practices. The notion of terroir is the main basis of the Appellation d’Origine Contrôlée in viticulture. It is based on the one hand on privileged natural factors and on the other hand on the know-how of the winegrowers; the whole allowing the production of a wine endowed with an authenticity and a sensory typicity. Wine-growing practices evolve according to progress in viticulture and oenology, while the natural factors of the terroir are much more stable, with the exception of the vintage. They therefore represent a fundamental pillar of the identity of an appellation vineyard. Faced with a wine market that is globalizing and an evolution of the consumer, the “terroir” factor takes on a new dimension, becoming an important commercial vector for many vineyards.

Scientific approaches to this theme have been relatively limited, due to the complexity of the problem concerning the variables to be studied, their chain of influence and the overall response of the vine to the terroir, through wine (Riou et al., 1995 ). An AOC most often applies to a wine-growing region whose surface area is sufficient for the expression, in most cases, of a large-scale spatial diversity of the natural environment (terroir units) which can lead to significant differences in the kind of wine..

An economic valuation of this factor of production therefore requires a method that can easily reveal and identify the units of terroir of a region, but also give them a spatial dimension, to allow a concrete use by the winegrowers, at the level of wine and agro-viticultural techniques.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

R. MORLAT

I.N.R.A. U.R.V.V.
42, rue Georges Morel. 49071 Angers. France

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Influence of maceration time and temperature on some bioactive compounds in Malvazija istarska white wines

The rising trend of moderate wine consumption as a part of a healthy lifestyle promotes white wines with higher phenolic content because of their bioactive properties. Duration and temperature of the maceration process have a marked impact on the content and composition of wine phenolics. The aim of this study was to explore the effect of applying maceration processes of different durations and temperature on total phenolic content and flavan-3-ol compounds concentration of Malvazija istarska (Vitis vinifera L.) wines, an autochthonous Croatian white grape variety. Vinification took place at the Institute of Agriculture and Tourism (Poreč) where pre-fermentative two days cryomaceration treatment at 8 °C (CRYO), seven days maceration treatment at 16 °C (M7), and prolonged post-fermentative maceration treatments at 16 °C for 14 days (M14), 21 day (M21), and 42 days (M42) were studied and compared to non-maceration control treatment (C). Total phenolic content was determined by the Folin-Ciocalteu colorimetric method using a UV/VIS spectrophotometer and the results were expressed as gallic acid equivalents (mg/L GAE).

The challenge of improving oenological quality in favorable conditions for productivity

Marselan (Cabernet-Sauvignon x Grenache), has been planted for more than 20 years now in Uruguay. Due to its good agronomic and oenological aptitudes under uruguayan conditions, it is currently the red variety with highest plantation rate. The objective of the study was to identify management practices, aimed at improving quality in highly productive vineyards, different fruit/leaf regulation methods were tested in southern Uruguay.

Exploring the mechanisms of grapevine single berry development and ripening

The strategy of single berry phenotyping is a recently rediscovered research tool that has gained great attention. The latest studies have indicated that previous physiological models based on pooling asynchronous populations of berries provided biased or blurred information on berry development key players. The possibility of monitoring and sampling single synchronized berries to study their development sequentially has opened new lines of research aimed at unraveling the genes that regulate grapevine fruit development. This study aimed to decipher the gene pathways responsible for the activation/deactivation of physiological processes involved in the green phase of growth, the onset of ripening, and the second growth phase.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.