Terroir 1996 banner
IVES 9 IVES Conference Series 9 Eléments importants d’une méthodologie de caractérisation des facteurs naturels du terroir, en relation avec la réponse de la vigne à travers le vin

Eléments importants d’une méthodologie de caractérisation des facteurs naturels du terroir, en relation avec la réponse de la vigne à travers le vin

Abstract

The French viticultural appellation areas are the result of an empirical, historical and evolutionary selection which, generally, has consecrated a match between natural factors, grape varieties and viti-vinicultural practices. The notion of terroir is the main basis of the Appellation d’Origine Contrôlée in viticulture. It is based on the one hand on privileged natural factors and on the other hand on the know-how of the winegrowers; the whole allowing the production of a wine endowed with an authenticity and a sensory typicity. Wine-growing practices evolve according to progress in viticulture and oenology, while the natural factors of the terroir are much more stable, with the exception of the vintage. They therefore represent a fundamental pillar of the identity of an appellation vineyard. Faced with a wine market that is globalizing and an evolution of the consumer, the “terroir” factor takes on a new dimension, becoming an important commercial vector for many vineyards.

Scientific approaches to this theme have been relatively limited, due to the complexity of the problem concerning the variables to be studied, their chain of influence and the overall response of the vine to the terroir, through wine (Riou et al., 1995 ). An AOC most often applies to a wine-growing region whose surface area is sufficient for the expression, in most cases, of a large-scale spatial diversity of the natural environment (terroir units) which can lead to significant differences in the kind of wine..

An economic valuation of this factor of production therefore requires a method that can easily reveal and identify the units of terroir of a region, but also give them a spatial dimension, to allow a concrete use by the winegrowers, at the level of wine and agro-viticultural techniques.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

R. MORLAT

I.N.R.A. U.R.V.V.
42, rue Georges Morel. 49071 Angers. France

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.

Cascading effects of spring weather conditions into grape berry ripening

The effects of climate change on viticulture are complex due to interactions among factors and cascading effects.

The terroir of Pinot noir wine in the Willamette valley, Oregon – a broad analysis of vineyard soils, grape juice and wine chemistry

Wine-grapes in the Willamette Valley, Oregon, are grown on three major soil parent materials: volcanic, marine sediments, and loess/volcanic.

The wine microbial consortium: a real terroir characteristic

Yeast, bacteria, species and strains play a key role in the winemaking process by producing metabolites which determine the sensorial qualities of wine. Therefore microbial population numeration, species identification and strains discrimination from berry surface at harvest to storage in bottle are fundamental.

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time.