Terroir 1996 banner
IVES 9 IVES Conference Series 9 Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

Abstract

The climatic component is one of the elements of the zoning of viticultural potential, alongside the geological and pedological components (Morlat, 1989; Lebon et al, 1993). Many climatic indices have thus been defined to estimate the potential for wine production at the scale of a region or a country (Carbonneau et al., 1992). The main climatic variables used are temperature and radiation. We note in particular the indices of Branas, Huglin and Ribereau-Gayon (Huglin, 1986). However, few studies have been undertaken on the spatial variability of microclimatic conditions at the scale of a vineyard, a valley, or even a municipality.

Today, faced with the need to be able to adapt to rapidly changing markets and competition, it seems increasingly necessary to better understand the pedoclimatic environment of the vineyard. A typical example of an effort in this direction is the bioclimatic zoning carried out in the department of Aude (Jacquinet, 1989). This approach, based on a dense network of meteorological stations, has made it possible to define various climatically homogeneous zones in this department. The zoning operation of the Champagne vineyard which has been in place since 1991 (Panigai and Langellier, 1992) also includes a climatic component, which is all the more crucial as this vineyard is at the northern limit of vine cultivation. . However, in this region where vines can be grown on steep slopes, it is necessary to ask the question of the spatial representativeness of the measurements made on a meteorological station. Indeed, due to differences in slope (which frequently exceed 10°, or 17%), exposure and altitude, meteorological variables can vary greatly a few hundred meters away.

In order to analyze the components of microclimatic variability within the vineyard, we compared the variability of climatic conditions at the regional scale and at the local scale (vine plot). Our approach consisted in comparing the data of two meteorological observation networks on two different and complementary spatial scales: the meteorological network of the Champagne vineyards, the objective of which is to estimate the mesoclimatic variations on the scale of the whole of the Champagne vineyard (area of ​​the order of 1000 km2), and a local network installed in the commune of Aÿ (Marne, France) intended to characterize the microclimatic variability and the differences in the development of the vine on the scale of the relief unit (1 km2). We have also introduced an intermediate scale, representing a zone that is physically well characterized and that one could think a priori to be homogeneous: the Marne valley. We were particularly interested in 3 variables: radiation, wind and temperature, which all have a decisive influence on the growth and development of the vine.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

P. CELLIER (1), F. LANGELLIER (2), O. BRUN (3), P. PERSONNIC (3), L. PANIGAI (2)

(1) INRA, Bioclimatology Unit, 78850 Thiverval-Grignon (France)
(2) CIVC, Technical Services, 51200 Epernay (France)
(3) Mumm – Perrier-Jouët Vignobles et Recherches, 51200 Epernay (France)

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Heatwaves impacts on grapevine physiology, berry chemistry & wine quality

Climate change impacts on both yields and quality have increased over the past decades, with the effects of extreme climate events having the most dramatic and obvious impacts. Increasing length and intensity of heatwaves associated with increased water stress necessitates a reevaluation of climate change responses of grapevine and, ultimately, a reconsideration of vineyard management practices under future conditions. Here we summarize results from a three-year field trial manipulating irrigation prior to and during heatwave events to assess impacts of water application rates on vine health and physiology, berry chemistry, and wine quality. We also highlight potential mitigation strategies for extreme heat, both in terms of water application, as well as other cultural practices that could be widely applicable.

Role of PH and its management during vinification on the extraction during maceration and on the evolution during ageing of the phenolic compounda of red wine

Climatic changes cause significant variations in the composition of grapes. for red grapes, a mismatch between phenolic and technological ripening is often observed. There is also often a marked increase in pH and a reduction in fixed acids, which affect the stability and evolution of the wine during ageing. These experiments will provide more information on the role of pH during the winemaking of red wines on the extraction and evolution of phenolic compounds.

A procedure for the zoning of grapevine in a hilly area (Collio, North-Eastern Italy) using simulation models and GIS

The zoning of grapevine in a hilly area should consider the variability of the environmental characteristics due to topography. Since soil and climate data are usually available as point data

NMR approach for monitoring the photo-degradation of riboflavin and methionine

The light exposure of white wine is responsible for several reactions leading to changes on colour, flavours and, consequently, affecting the sensory profile.

Remote sensing applications in viticulture: recent advances and new opportunities

Remote sensing applications in viticulture have been a research theme now for nearly two decades, becoming a valuable tool for vineyard management. Metrics produced using remotely sensed images of vineyards have yielded relationships with grape quality and yield that can help optimise vineyard performance