Terroir 1996 banner
IVES 9 IVES Conference Series 9 Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

Abstract

The climatic component is one of the elements of the zoning of viticultural potential, alongside the geological and pedological components (Morlat, 1989; Lebon et al, 1993). Many climatic indices have thus been defined to estimate the potential for wine production at the scale of a region or a country (Carbonneau et al., 1992). The main climatic variables used are temperature and radiation. We note in particular the indices of Branas, Huglin and Ribereau-Gayon (Huglin, 1986). However, few studies have been undertaken on the spatial variability of microclimatic conditions at the scale of a vineyard, a valley, or even a municipality.

Today, faced with the need to be able to adapt to rapidly changing markets and competition, it seems increasingly necessary to better understand the pedoclimatic environment of the vineyard. A typical example of an effort in this direction is the bioclimatic zoning carried out in the department of Aude (Jacquinet, 1989). This approach, based on a dense network of meteorological stations, has made it possible to define various climatically homogeneous zones in this department. The zoning operation of the Champagne vineyard which has been in place since 1991 (Panigai and Langellier, 1992) also includes a climatic component, which is all the more crucial as this vineyard is at the northern limit of vine cultivation. . However, in this region where vines can be grown on steep slopes, it is necessary to ask the question of the spatial representativeness of the measurements made on a meteorological station. Indeed, due to differences in slope (which frequently exceed 10°, or 17%), exposure and altitude, meteorological variables can vary greatly a few hundred meters away.

In order to analyze the components of microclimatic variability within the vineyard, we compared the variability of climatic conditions at the regional scale and at the local scale (vine plot). Our approach consisted in comparing the data of two meteorological observation networks on two different and complementary spatial scales: the meteorological network of the Champagne vineyards, the objective of which is to estimate the mesoclimatic variations on the scale of the whole of the Champagne vineyard (area of ​​the order of 1000 km2), and a local network installed in the commune of Aÿ (Marne, France) intended to characterize the microclimatic variability and the differences in the development of the vine on the scale of the relief unit (1 km2). We have also introduced an intermediate scale, representing a zone that is physically well characterized and that one could think a priori to be homogeneous: the Marne valley. We were particularly interested in 3 variables: radiation, wind and temperature, which all have a decisive influence on the growth and development of the vine.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

P. CELLIER (1), F. LANGELLIER (2), O. BRUN (3), P. PERSONNIC (3), L. PANIGAI (2)

(1) INRA, Bioclimatology Unit, 78850 Thiverval-Grignon (France)
(2) CIVC, Technical Services, 51200 Epernay (France)
(3) Mumm – Perrier-Jouët Vignobles et Recherches, 51200 Epernay (France)

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Use of satellite in precision viticulture: the Franciacorta experience

Today, the concept of precision vine management (or site-specific viticulture) has a great relevance. It is based on the practice of a different management in relation to the different features of the crop site. In this way, all practices should be adapted to the land spatial variability and should be linked to the real needs of vines.

Analysis of vineyard soil after mulching with municipal solid waste (MSW)-compost

The use of compost as amendment in agriculture is a well-established practice, strongly recommended for numerous benefits.

Winemaking processes discrimination by using qNMR metabolomics

AIM: Metabolomics in food science has been increasingly used over the last twenty years. Among the tools used for wine, qNMR has emerged as a powerful tool to discern wines based on environmental factors such as geographical origin, grape variety and vintage (Gougeon et al., 2019a).

Déterminisme de l’effet terroir: influence de la surface foliaire primaire de la vigne en début de cycle sur le potentiel vendange

ln the Mid-Loire Valley, in France, for the fast twenty years a network of experimental plots has been used to analyse the terroir effect on the behaviour of the Cabernet franc variety of grape. The study of the primary leaf area (SFI) for several vintages shows that it differs greatly from one terroir to another.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.