Terroir 1996 banner
IVES 9 IVES Conference Series 9 Variabilité spatiale du gel printanier dans le vignoble champenois : application au zonage climatique

Variabilité spatiale du gel printanier dans le vignoble champenois : application au zonage climatique

Abstract

Dans le vignoble de Champagne, les gelées de printemps sont à l’origine de variations importantes du volume de récolte qui sont très pénalisantes pour le commerce. Cette variabilité se traduit à la fois dans le temps (années sans gelée alternant avec des années avec de fortes gelées) et dans l’espace. Certains secteurs du vignoble sont en effet statistiquement plus gélifs que d’autres, mais, chaque année, aucune commune ne peut se considérer à l’abri de cet accident climatique. L’objectif de l’étude est précisément d’analyser la répartition spatiale du gel et d’en déterminer les principaux mécanismes, liés à la topographie des coteaux, leur orientation mais aussi aux variables météorologiques régionales.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

I. SARMIR (1), F. LANGELLIER (2)

(1) Université Paris VII
(2) Comité Interprofessionnel des Vins de Champagne, 5, rue Henri Martin, BP 135, 51204 Epernay cedex

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Introducing heterogeneity measurements in terroir studies. Application in the região demarcada do douro (n portugal)

Terroir zoning studies have to manage the heterogeneity and complexity of the landscape properties and processes. The varying geology is one of the main landscape properties conditioning the spatial variability of terroirs.

Efectos del deshojado y de su combinación con el aclareo de Racimos en los componentes básicos de la producción y del Mosto, sobre cv. Tempranillo en la D.O. Ribera del Duero

Las técnicas de manejo del canopy de la vid pueden favorecer la adaptación de los sistemas de conducción a diversas condiciones de cultivo para obtener uva de calidad.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.

Cover crops in viticulture

In this audio recording of the IVES science meeting 2022, Gonzaga Santesteban (Department of Agronomy, Biotechnology and Food Science, Public University of Navarra (UPNA), Pamplona, Navarra, Spain) speaks about cover crops in viticulture. This presentation is based on 2 original articles accessible for free on OENO One.