Terroir 1996 banner
IVES 9 IVES Conference Series 9 Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

Abstract

En complément des études sur les caractéristiques édaphiques et paysagères du milieu (Dolédec, 1995), la caractérisation de la physiologie de la vigne et du parasitisme au cours de son cycle végétatif représente une composante essentielle de connaissance et de gestion des terroirs.

L’examen des chroniques et données disponibles dans ce domaine souligne une importante variabilité entre années et pour une même année entre les terroirs, le climat jouant un rôle essentiel dans la structuration de ces fluctuations. L’étude du climat à deux échelles, régionale et mésoclimatique (Panigai, Langellier, 1992), s’avère en conséquence indispensable pour développer des outils d’aide à la décision (modèles) qui utilisent des données climatiques en entrée, pour guider le viticulteur dans certains choix culturaux. Ce travail nécessite une phase préalable de conjrontation temporelle et de validation spatiale des informations modélisées par rapport aux observations de terrain. La constitution sous-jacente de banques de données biologiques annuelles par terroir qui sont à créer doit être le fruit de synthèses regroupant des références de réseaux expérimentaux et d’enquêtes conduites auprès des professionnels. Le mildiou, pour le thème parasitaire, et le poids des grappes, pour la physiologie, sont présentés pour illustrer cette démarche.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

L. PANIGAI, D. MONCOMBLE, F. LANGELLIER, A. DESCOTES, C RINVILLE

Comité Interprofessionnel du Vin de Champagne
5, rue Henri-Martin – 51200 EPERNA

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

Unraveling the mystery of 3SH: Quantifying glut-3SH-al and its bisulfite adduct in a range of white grape juice and wine samples

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc. In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough NZ, are strongly influenced by the concentrations of 3SH

Assessment of climate change impacts on water needs and growing cycle on grapevine in three DOs of NE Spain

This study assessed the suitability of grapevine growing in three DOs (Empordà, Pla de Bages and Penedès) of Catalonia (NE Spain) over the 21st century. For this purpose, an estimation of water needs and agroclimatic and phenological indicators was made. Climate change impacts were estimated at 1 km pixel resolution using temperature and precipitation projections from several general circulation models (GCM) and two climate change scenarios: RCP 4.5 (stabilization scenario) and RCP 8.5 (worst-case scenario). Potential crop evapotranspiration (following FAO procedure) and a daily water balance considering soil water holding capacity were used to estimate actual evapotranspiration of vines and, finally, water needs. Dynamics would be similar in the three DOs studied although the magnitude of impact differs. Water needs would be 2 and 3 times greater (ranging from 0 to more than 1500 m3/ha) than current water needs at both climate change scenarios. Moreover, blooming date would advance from 3 to 6 weeks, harvest date from 1 to 2.5 months, resulting in growing cycles from 10 to 80 days shorter. It should also be noted that frost risk would decrease from 6 to 76%, the number of days with temperatures above 30ºC during ripening would rise from 48 to 500% and tropical nights (minimum temperature >20ºC) at ripening would increase from 28 to 150%, depending on the scenario and the DOs. The impacts of climate change in the three DOs could result in significant limitations for grapevine cultivation and wine production if adaptive strategies are not applied. This result could serve as a basis for the design of specific and particular adaptation strategies to improve and maintain vineyards in the DOs studied and could be extrapolated to similar DOs and regions.

Aromatic complexity in Verdicchio wines: a case study

In this video recording of the IVES science meeting 2021, Fulvio Mattivi (Fondazione Edmund Mach, Centro Ricerca ed Innovazione, San Michele all’Adige, Italy) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.

Evaluation of new fem grapevine varieties resistant to the main fungal diseases

Context and purpose of the study. The genetic improvement of grapevines at the Edmund Mach Foundation (FEM) has evolved significantly since its inception, and its philosophy on sustainable viticulture through crossbreeding techniques aligns with the urgent need to reduce chemical use in agriculture.