Terroir 1996 banner
IVES 9 IVES Conference Series 9 Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

Abstract

En complément des études sur les caractéristiques édaphiques et paysagères du milieu (Dolédec, 1995), la caractérisation de la physiologie de la vigne et du parasitisme au cours de son cycle végétatif représente une composante essentielle de connaissance et de gestion des terroirs.

L’examen des chroniques et données disponibles dans ce domaine souligne une importante variabilité entre années et pour une même année entre les terroirs, le climat jouant un rôle essentiel dans la structuration de ces fluctuations. L’étude du climat à deux échelles, régionale et mésoclimatique (Panigai, Langellier, 1992), s’avère en conséquence indispensable pour développer des outils d’aide à la décision (modèles) qui utilisent des données climatiques en entrée, pour guider le viticulteur dans certains choix culturaux. Ce travail nécessite une phase préalable de conjrontation temporelle et de validation spatiale des informations modélisées par rapport aux observations de terrain. La constitution sous-jacente de banques de données biologiques annuelles par terroir qui sont à créer doit être le fruit de synthèses regroupant des références de réseaux expérimentaux et d’enquêtes conduites auprès des professionnels. Le mildiou, pour le thème parasitaire, et le poids des grappes, pour la physiologie, sont présentés pour illustrer cette démarche.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

L. PANIGAI, D. MONCOMBLE, F. LANGELLIER, A. DESCOTES, C RINVILLE

Comité Interprofessionnel du Vin de Champagne
5, rue Henri-Martin – 51200 EPERNA

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.

The potential of multispectral/hyperspectral technologies for early detection of “flavescence dorée” in a Portuguese vineyard

“Flavescence dorée” (FD) is a grapevine quarantine disease associated with phytoplasmas and transmitted to healthy plants by insect vectors, mainly Scaphoideus titanus. Infected plants usually develop symptoms of stunted growth, unripe cane wood, leaf rolling, leaf yellowing or reddening, and shrivelled berries. Since plants can remain symptomless up to four years, they may act as reservoirs of FD contributing to the spread of the disease. So far, conventional management strategies rely mainly on the insecticide treatments, uprooting of infected plants and use of phytoplasma-free propagation material. However, these strategies are costly and could have undesirable environmental impacts. Thus, the development of sustainable and noninvasive approaches for early detection of FD and its management are of great importance to reduce disease spread and select the best cultural practices and treatments. The present study aimed to evaluate if multispectral/hyperspectral technologies can be used to detect FD before the appearance of the first symptoms and if infected grapevines display a spectral imaging fingerprint. To that end, physiological parameters (leaf area, chlorophyll content and photosynthetic rate) were collected in concomitance to the measurements of plant reflectance (using both a portable apparatus and a remote sensing drone). Measurements were performed in two leaves of 8 healthy and 8 FD-infected grapevines, at four timepoints: before the development of disease symptoms (21st June); and after symptoms appearance (ii) at veraison (2nd August); at post-veraison (11th September); and at harvest (25th September). At all timepoints, FD infected plants revealed a significant decrease in the studied physiological parameters, with a positive correlation with drone imaging data and portable apparatus analyses. Moreover, spectra of either drone imaging and portable apparatus showed clear differences between healthy and FD-infected grapevines, validating multispectral/ hyperspectral technology as a potential tool for the early detection of FD or other grapevine-associated diseases.

The effect of viticultural treatment on grape juice chemical composition

Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.