Macrowine 2021
IVES 9 IVES Conference Series 9 Development of a new commercial phenolic analysis method for red grapes

Development of a new commercial phenolic analysis method for red grapes

Abstract

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines. The wine industry uses a variety of commercial phenolic assays to determine phenolic maturity in red grapes. Some of these assays, however, are dated more than 20 years ago and do not always accurately reflect wine phenolic content from grape phenolic extracts. The aim of this study is to develop an adjusted phenolic sample preparation and extraction protocol so it can be used in commercial wineries and/or laboratories.In this study, six grape cultivars (Pinotage, Cabernet-Sauvignon, Merlot, Shiraz, Cinsualt and Pertit Verdot) were collected from 42 different vineyards from across 15 different farms. Representative samples were taken from the grapes of each block. Grape extractions were done in duplicates using four different methods namely Glories, Iland, Modified Iland and a custom made Machine crushed method. The Glories, Iland and modified Iland methods produces homogenized grapes, while the machine crushed method uses grape samples where only the skins were crushed. The modified Iland and machine crushed extraction methods were exposed to microwave treatment and extracted in a 50% alcohol solution for 30 min and 1 hour and 3h, 24h and 40h, respectively.Wines were made from every grape samples. Phenolic analyses were done for anthocyanins, tannins, total phenols index and colour density on the grapes and wines. Variation in the phenolic composition of the grapes where the different extraction methods were observed. Correlations between grapes and wines phenolic data with the different grape extraction methods will also be shown.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Asiphe Makalisa

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University,Kiera Lambrecht, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University Jose Luis Aleixandre Tudo, Universitat Politecnica de Valencia, Instituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de Alimentos and Stellenbosch University, South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology Keren Bindon, Australian Grape and Wine Research Institute, Adelaide Wessel du Toit, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University

Contact the author

Keywords

extraction, phenolic assay, red grapes, tannins

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.