Terroir 1996 banner
IVES 9 IVES Conference Series 9 Résistance stomatique et caractérisation hydrique des terroirs viticoles

Résistance stomatique et caractérisation hydrique des terroirs viticoles

Abstract

La caractérisation des terroirs viticoles se fonde sur divers types de démarches :
– démarche phytoécologique
L’analyse de la répartition des populations végétales naturelles permet une caractérisation écologique des milieux cultivés aux plans thermique, hydrique et trophique; elle oriente le choix ou la sélection des plantes (ou des cépages) à cultiver (Astruc et coll., 1984, 1987; Delpoux, 1971; Jacquinet et Astruc, 1979). Cette démarche a donné de bons résultats dans les zones où la topographie est l’élément déterminant d’une différenciation écologique des terroirs.
– démarche écogéopédologique
La mise en oeuvre de ce concept analytique fait appel aux méthodes et aux techniques de la géologie, de la pédologie et de l’agronomie, pour l’étude des sols, et des systèmes racinaires. Pour les Pays de Loire et avec le Cabemet franc, Morlat (1989, 1992) a pu hiérarchiser les potentialités agroviticoles des terroirs et distinguer :
1 – des terroirs à forte potentialité viticole qui permettent d’obtenir des vins de qualité, quelles que soient les conditions climatiques du millésime
2 – des terroirs à faible potentialité viticole pour lesquels les vins obtenus présentent toujours une ou plusieurs déficiences
3 – des terroirs à potentialité variable (forte ou faible) selon la climatologie de l’année

Ces deux démarches de caractérisation des terroirs intègrent de façon indirecte le fonctionnement de la vigne,
– soit d’une manière globale pour la méthode phytoécologique,
– soit par l’intermédiaire d’un certain nombre de variables telles que le système racinaire, la précocité, la maturation des baies, pour la méthode écogéopédologique.
En fait, comme le note Morlat (1992), « un bon diagnostic de la valeur viticole d’un terroir ne peut être réalisé que si le système sol-cépage-atmosphère est considéré dans son ensemble. » Tous les aspects du fonctionnement du système doivent être considérés simultanément, ce qui n’est pas aisé.

Toutefois, parmi les fonctions physiologiques essentielles, l’alimentation hydrique constitue un élément déterminant de la qualité d’une récolte (Mériaux et coll., 1990). C’est pourquoi, nous avons effectué un suivi de la nutrition hydrique de quelques parcelles de vigne du Frontonnais pendant les phases de véraison et de maturation.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

D. VIGNES (1), P. GALLEGO (2), M. GARCIA (2), C. TOSCA (1)

(1) CESBIO, 18, Av. Edouard Belin, 31055 Toulouse Cédex 
(2) ENSAT, 145 Av. de Muret, 31076 Toulouse Cédex 

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Techniques to study graft union formation in grapevine 

Grapevines are grown grafting in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which are primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, ideally grapevine rootstocks should be resistant to other soil borne pathogens and adapted to abiotic stress conditions. New rootstocks have the potential to adapt agriculture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite.

Chitosan treatment to manage grapevine downy mildew

Downy mildew is one of the most important grapevine diseases, caused by the Oomycete Plasmopara viticola. The management of the disease in organic agriculture can require up to 15 copper applications per year. However, copper accumulates in the soil, is phytotoxic and is toxic for organisms living in the soil, its use has been restricted in European Union to maximum 28 kg in 7 years. Therefore, testing of alternatives with equal effectiveness is desirable. Among those, the natural biopolymer chitosan, obtained from crab shells, proved to be effective toward downy mildew in plot experiments. The aim of our trials was to extend chitosan applications in large scale experiments in different years, cultivars and environmental conditions.

Monitoring grapevine water status using Landsat 8 images: a two-year case study in a Merlot vineyard

Viticulture needs for spatial and temporal information are increasing to improve vineyard management, especially concerning water efficiency. Remote sensing, particularly from satellites, can be a powerful tool to assess vineyard characteristics such as vigor or water status in space-time. In this study, we use Landsat 8, an American Earth observation satellite with six bands from the visible (VIS) to the Short-Wave Infrared (SWIR) domains with 30m spatial resolution and two thermal bands with 100m spatial resolution.

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content.

Laying footprints on a new path: proper accounting of biogenic fluxes makes viticulture carbon neutral

To limit the acceleration of global warming we need to reduce greenhouse gases emissions (GHG), making our production processes more carbon-efficient and optimizing absorptions.