GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape


Context and purpose of the study – The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties. The aim of the present study was to evaluate the quality and the ripening process of Pinot blanc grape by a non-destructive fluorescence-based sensor.

Material and methods – The study was performed on two vineyards of cv. Pinot blanc located in the Adige Valley (South Tyrol, Bolzano), in two consecutive vintages. The vineyard differed in the row orientation, east-west or north-south, and then on the sun light exposure of the grape-bunches. The grape phenolic maturity was assessed on intact berries by six measurements from bunch closure to harvest time. In each vineyard, 25 grape-bunches per row sides were flashed by Multiplex® 3.6 (Force-A, Orsay, France), for a total of 3 rows and 150 grape-bunches/measurement. The instrument indices of chlorophyll (SFR_R) and flavonols (FLAV_UV) were considered. Standard grape maturity tests were performed to assess total soluble solids (TSS) and total acidity content of the grape juice by spectroscopic method. At maturity the grapes were processed with a standard vinification protocol for white wines. Total polyphenolic content of wines was determined by a spectrophotometric analysis.

Results –A linear decrease of SFR_R index in the berry-skin during the grape ripening period was recorded. Interestingly, SFR_R values negative correlated with the TTS accumulation in Pinot blanc berries. On the other side, positive correlations between SFR_R and titratable acidity, malic acid and tartaric acid content, were observed. The FLAV_UV index showed an increasing linear trend during the grape ripening period. At harvest, significant difference in FLAV_UV index between the two vineyards was observed. Looking more deeply inside the data, the berry-skin FLAV_UV index significantly differed among the four sun-light expositions, with greater values recorded for the grape-bunches located in south and east sides of the vineyard rows. These results are in accordance with the available literature on the role flavonols as sun-burn protection compounds. Interestingly, the total polyphenolic content of the produced wines showed a positive correlation with the final FLAV_UV values measured in the berry-skin. In conclusion, the Multiplex® indices could improve precision viticulture strategies, such as the implementation of precision harvest practices. Indeed, SFR_R index could be used to indirectly evaluate the whole ripening process of white grapes in term of grape sugar content and acidity, while FLAV_UV could provide useful indications to winemakers about taste of final product. Future studies will be necessary to better correlate the berry-skin FLAV_UV values and the flavours of white wine.


Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster


Selena TOMADA1*, Florian PICHLER1, Julia MARTINELLI1, Giovanni AGATI2, Valentina LAZAZZARA3, Martin ZEJFART4, Fenja HINZ3, Ulrich PEDRI4, Peter ROBATSCHER3, Florian HAAS1

1 Department of Viticulture, Laimburg Research Centre, BZ, Italy
2 Istituto di Fisica Applicata ‘Nello Carrara’, CNR, FI, Italy
3 Laboratory for Flavours and Metabolites, Laimburg Research Centre, BZ, Italy
4 Department of Enology, Laimburg Research Centre, BZ, Italy

Contact the author


Chlorophyll, Flavonols, Grape, Multiplex®, Quality, Pinot blanc


GiESCO | GiESCO 2019 | IVES Conference Series


Related articles…

Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

The sensory definition of the aging bouquet of red Bordeaux wines has been shown to be structured around seven main aromatic nuances: “undergrowth”, “spicy” “truffle”, “fresh red- and black-berry fruits”, “liquorice”, “mint”, and “toasted” (1). Some of these descriptors are also used to describe the aromatic notes of old Champagnes (2) suggesting common volatile compounds between these two types of wine.

New fungus-resistant grapevine varieties display high and drought-independent thiol precursor levels

The use of varieties tolerant to diseases is a long-term but promising option to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are starting to release a range of new hybrids performing well regarding fungi susceptibility and wine quality.

Phloem anatomy traits predict maximum sugar accumulation rates

Heat and water stress can accelerate berry sugar accumulation and lead to excessive sugar-to-acid ratios at harvest, producing bland, overly-alcoholic wines. Selecting grapevines for slower sugar accumulation could help maintain wine quality under future, hotter conditions, but these efforts have been stymied by our limited understanding of the traits determining sugar accumulation rates. Here, we measured traits characterizing the structure and anatomy of the sugar transport system – the phloem – in 16 winegrape cultivars and tested for relationships with sugar accumulation rates and cultivar climate classifications.

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.

Vineyard mulching offer many benefits beyond winter protection

Grapevines are susceptible to freezing damage at temperatures below -5°F during the winter season. Preventing winter injury to grapevines is a major challenge in many grape-producing regions. Conventional methods such as hilling-up soil over graft unions have been developed as winter protection methods for preventing vine loss. However, these practices have drawbacks such as soil erosion, vine damage and crown gall development.