Terroir 1996 banner
IVES 9 IVES Conference Series 9 Vine environment interaction as a method for land viticultural evaluation. An experience in Friuli Venezia Giulia (N-E of Italy)

Vine environment interaction as a method for land viticultural evaluation. An experience in Friuli Venezia Giulia (N-E of Italy)

Abstract

For a long time environment was known as one of the most important factors to characterize the quality of wines but at the same time it appears very difficult to distinguish inside the “terroir” the role of the single factor. These remarks partially explain why methods for viticultural evaluation are often quite different (Amerine et al., 1944; Antoniazzi et al., 1986; Asselin et al., 1987; Astruc et al., 1980; Bonfils, 1977; Boselli, 1991; Colugnati, 1990; Costantinescu, 1967; Costantini et al., 1987; Dutt et al., 1981; Falcetti et al., 1992; Fregoni et al., 1992; Hidalgo, 1980; Intrieri et al., 1988; Laville, 1990; Morlat et al., 1991; Scienza et al., 1990; Shubert et al., 1987; Turri et al., 1991). From the beginning of the 80s only, studies about adaptation of vine to environment finally acquired an interdisciplinary and complementary character. In this way, the definition of viticultural vocation rises from the interaction of informations on the climate, the geomorphology, soil conditions and cultural practices with vine-performance, drawing special attention to a relationship between climate, soil and vine. Substantially, the “zonation” idea is connected with “viticultural vocation”, where “zonation” means the subdivision of a land by ecological, pedological and topographical characteristics, verified by the adaptation of the different cultivars (Morlat et al., 1989, 1991).

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

G. COLUGNATl (1), G. MICHELUTTl (1), P. BELLANTONE (2), D. BULFONI (3), F. ZANELLI (2)

(1) ERSA-Ente Regionale perla Promozione e lo Sviluppo dell’Agncottura del Friuli-Venezia Giulia
(2) Consorzio Doc “Friuli GRAVE”, Pordenone
(3) Collaboratore ERSA

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Multicriteria assessment of 11 agroecological viticulture systems during six years

Context and purpose of the study. Modern conventional agriculture, including viticulture, relies greatly on the use of chemical inputs, especially synthetic pesticides.

Diversity of arbuscular mycorrhizal fungi on grapevine roots across an edaphoclimatic gradient

Challenges associated with climate change, such as soil erosion and drought, have impacted viticulture across wine regions globally in recent decades. As winegrowers struggle to maintain yield and quality standards under these conditions, methods to adapt to and mitigate the impacts of climate change have become more prevalent. One potential mitigation strategy is to enhance symbiotic interaction of grapevine roots with arbuscular mycorrhizal fungi (AMF).

Impact of yeast strain and aging time on the secondary metabolites, macromolecule composition, and sensory attributes of sparkling wines elaborated by the traditional method

The occurrence of aroma and macromolecule constituents in sparkling wines, directly influencing their organoleptic characteristics, is affected by several factors, including the grape cultivar, base-wine particularities, inoculated yeasts, the aging time, and winemaking practices [1].

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

Soil humidity and early leaf water potential affected by water recharge before budbreak in cv. Tempranillo deficitary irrigated during the summer in the D. O. Ribera del Duero

The availability of water for irrigation is usually greater at the beginning of spring than in the following months, until the end of summer, in most regions of Spain.