Terroir 1996 banner
IVES 9 IVES Conference Series 9 Differentiating and grouping of oltrepo’ pavese environments according to grape maturation

Differentiating and grouping of oltrepo’ pavese environments according to grape maturation

Abstract

The maturation patterns process has been very studied. In particular the modelization of the sugars and titratable acidity during the ripening period was an important approach, in particular for the prediction of harvest date (Barillere et al., 1988; Jourion et al.,1987; Maujean et al., 1983; Scienza, 1989). In Oltrepò Pavese, the widest viticultural district of Lombardy – Northern Italy – (about 15000 hectares), grape maturation trends shows high variability, due to the large variation in environmental characteristics of vineyards (altitude, exposure, soil type, mesoclimate) and to “cultivar x environment” interaction. In 1994 C.I.VI.FRU.CE. the agricultural experimental station of Lombardy Regional Government, started a programme to study the different type of grape maturation in Oltrepò Pavese.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

F. MASTROMAURO (1), A. LEONl (1), A. SCIENZA (2)

(1) C.I.VI.FRU.CE. – Régions Lombardia – Torrazza Coste, Pavia, Italy
(2) Istituto di Coltivazioni Arboree, Università degli Studi di Milano, Via Celoria, 2, Milano, Italy

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Vertical temperature gradient in the canopy provides opportunities to adapt training system in a climate change context

Aims: The aims of this study were (1) to measure the vertical temperature gradient in the vine canopy in parcels with different vineyard floor management practices and (2) to analyze the factors influencing this gradient. The objective was to investigate whether the increase of trunk height could be an adaptation strategy to reduce air temperature in the bunch zone in a context of climate change. 

Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

The purpose of the study was to monitor berry development as a function of site, vine water status and climate in order to improve our understanding of the role played by climate change on secondary metabolites relevant to wine quality.

Effets des pratiques agro-viticoles sur l’activité biologique et la matière organique des sols : exemples en Champagne et en Bourgogne

The notion of terroir covers multiple components, from geology, pedology, geomorphology and climatology (Doledec, 1995), to aspects that are less well identified but which also intervene in the “typicality” of wines. This justifies the “zoning” approach (Moncomble and Panigaï, 1990) to define homogeneous areas, under the same agro-viticultural management and also identified at the product level (Morlat and Asselin, 1992).

Capture depletion of grapevine DNA: an approach to advance the study of microbial community in wine

The use of next-generation sequencing (NGS) has helped understand microbial genetics in oenology. Current studies mainly focus on barcoded amplicon NGS but not shotgun sequencing, which is useful for functional analyses. Since the high percentage of grapevine DNA conceals the microbial DNA in must, the majority of sequencing data is wasted in bioinformatic analyses. Here we present capture depletion of grapevine whole genome DNA.

The plantation frame as a measure of adaptation to climate change

The mechanization of vineyard work originally led to a reduction in planting densities due to the lack of machinery adapted to the vineyard. The current availability of specific machinery makes it possible to establish higher planting densities. In this work, three planting densities (1.40×0.80 m, 1.80×1 m and 2.20×1.20 m, corresponding to 8928, 5555 and 3787 plants/ha respectively) were studied with four varieties autochthonous of Galicia (northwestern Spain): Albariño and Treixadura (white), Sousón and Mencía (red). The vines were trained in a vertical shoot positioning system using a single Royat cordon, and pruned to spurs with two buds each. Agronomic data (yield, pruning wood weight, Ravaz index) and oenological data in must were collected. The higher planting density (1.40×0.80 m) had no significant effect on grape yield per vine in white varieties, although production per hectare was much higher due to the greater number of plants. In red varieties, this planting density resulted in a significantly lower production per vine, compensated by the greater number of plants. In addition, it significantly reduced the Brix degree in the must of the Albariño, Treixadura and Sousón varieties, and increased the total acidity in the latter two and Mencía. It also caused an increase in extractable and total anthocyanins and IPT in red grapes. The effects of high planting density on grapes are of great interest for the adaptation of varieties in the context of climate change. In the future, it could be advisable to modify the limits imposed by the appellations of origin on the planting density of these varieties in order to obtain more balanced wines.