Terroir 1996 banner
IVES 9 IVES Conference Series 9 Quelles cibles moléculaires pourraient expliquer l’effet du terroir sur la composition des baies en sucres et acides?

Quelles cibles moléculaires pourraient expliquer l’effet du terroir sur la composition des baies en sucres et acides?

Abstract

Le manque de connaissances concernant la physiologie de la maturation du raisin a longtemps interdit d’interpréter l’effet du terroir ou du millésime sur la qualité des vendanges en termes moléculaires. L’hypothèse selon laquelle c’est la perméabilité membranaire qui contrôlerait le sens comme l’intensité du stockage des acides est pourtant déjà ancienne (1). L’étude du transport des acides organiques et de son coût énergétique permet d’avancer certaines hypothèses concemant les sites potentiels de la régulation du contenu en sucres et acides du raisin sous l’effet de paramètres environnementaux.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type: Poster

Authors

N. TERRIER, F.-X. SAUVAGE, A. AGEORGES, C. ROMIEU

Institut Supérieur de la Vigne et du Vin, INRA-IPV, Unité de Recherches de Biochimie Métabolique et Technologie
2, place Viala, 34060 Montpellier Cedex 01

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Developing an integrated viticulture in the upper part of the hill Somló

The hill Somló looks like a huge island wich jumps out of the see, a few kilometers away from the slope of Bakony highland and on the edge of the Hungarian small plane.

Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Aim: This study aims to show the application of a new methodological approach to improve the resolution of Sentinel-2A images and derived vegetation indices through the results from different vineyards. 

USDA national grapevine germplasm resources: new curators, new directions

The National Plant Germplasm System (NPGS) in the United States Department of Agriculture safeguards numerous species. Grapevines are split in two locations: Davis, CA and Geneva, NY. The two germplasms maintain 43 Vitis species with over 4500 genetically unique accessions.