Terroir 1996 banner
IVES 9 IVES Conference Series 9 Quelles cibles moléculaires pourraient expliquer l’effet du terroir sur la composition des baies en sucres et acides?

Quelles cibles moléculaires pourraient expliquer l’effet du terroir sur la composition des baies en sucres et acides?

Abstract

Le manque de connaissances concernant la physiologie de la maturation du raisin a longtemps interdit d’interpréter l’effet du terroir ou du millésime sur la qualité des vendanges en termes moléculaires. L’hypothèse selon laquelle c’est la perméabilité membranaire qui contrôlerait le sens comme l’intensité du stockage des acides est pourtant déjà ancienne (1). L’étude du transport des acides organiques et de son coût énergétique permet d’avancer certaines hypothèses concemant les sites potentiels de la régulation du contenu en sucres et acides du raisin sous l’effet de paramètres environnementaux.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type: Poster

Authors

N. TERRIER, F.-X. SAUVAGE, A. AGEORGES, C. ROMIEU

Institut Supérieur de la Vigne et du Vin, INRA-IPV, Unité de Recherches de Biochimie Métabolique et Technologie
2, place Viala, 34060 Montpellier Cedex 01

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Effect of Saccharomyces species interaction on alcoholic fermentation behaviour and aromatic profile of Sauvignon blanc wine

Enhancing the sensory profile of wine by the use of different microorganism has been always a challenge in winemaking. The aim of our work was to evaluate the impact of different fermentation schemes by using mixed and pure cultures of different Saccharomyces species to Sauvignon blanc wine chemical composition and sensory profile.

Explorando el potencial bioprotector de levaduras nativas no-Saccharomyces en la vinificación: resultados preliminares

The use of the term bioprotection in winemaking refers to the use of non-chemical methods to prevent the development of undesirable microorganisms (yeasts and/or bacteria). The reason for studying this method is mainly as a natural alternative to the addition of sulfites during the pre-fermentation stages. In winemaking, the addition of s02 has multiple functions, the main ones being antiseptic and antioxidant power.

Phenolic, antioxidant, and sensory heterogeneity of oenological tannins: what are their possible winemaking applications?

AIM: The aim of this work was to characterize 18 oenological tannins by the polyphenolic, antioxidant, and sensory point of view.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).