Terroir 1996 banner
IVES 9 IVES Conference Series 9 Etude préliminaire des influences pédoclimatiques sur les caractéristiques quali-quantitatives du cépage aglianico dans une zone de la province de benevento-ltalie

Etude préliminaire des influences pédoclimatiques sur les caractéristiques quali-quantitatives du cépage aglianico dans une zone de la province de benevento-ltalie

Abstract

La nécessité de classer les vignobles d’une zone en fonction de la qualité de ses vins n’est pas récente, mais ce n’est seulement dans ces dix dernières années que les études sur l’aptitude de différentes zones à la culture de la vigne revêtent un caractère intégré et interdisciplinaire (Boselli, 1991). La définition de l’aptitude du milieu est ainsi obtenue en faisant interagir les informations climatiques, pédologiques, topographiques et culturales avec l’expression végétative, productive et qualitative des cépages. En Italie de nombreuses recherches ont été conduites sur les rapports entre cépage et environnement, bien que limitées aux régions du Nord (Scienza et al., 1990 ; Bogoni et Panont, 1992 ; Panont et al.. 1994 ; Falcetti, 1992 ; Falcetti et al., 1994 ; Fregoni et al., 1992 ; Reina et al., 1995 ; Campostrini et al., 1993). Cette étude a pour but de définir le niveau de vocation de quelques zones viticoles dans la province de Benevento, où l’on cultive le cépage Aglianico comme pour donner des vins ne vieillissant pas, afin de révéler les situations pédoclimatiques et culturales en mesure d’optimiser l’interaction cépage x environnement.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

M. BOSELLl (1), C. COLETTA (1), L. MOIO (2), A. MONACO (2), G. SCAGLIONE

(1) Istituto di Coltivazioni Arboree
(2) Dipartimento di Scienze degli Alimenti
Università degli Studi di Napoli “Federico II”
Via Università 100, 80055 Portici (Italie)

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Characterization of “territoires” throughout the production of wines obtained with withered grapes: the cases of “Terra della Valpolicella” (Verona) and “Terra della Valle del Piave” (Treviso) in Northern Italy

Dans la définition et la description d’un “territoire” (“terra” en italien), avec les facteurs du milieu et génétiques, un rôle important est joué par ceux agronomiques, techniques et de culture qui contribuent à caractériser le produit d’une zone spécifique.

Sustainability as system innovation: sustainability as system innovation: a returnable system for glass wine bottles

Introduction increasing sustainability is essential and a societal challenge, requiring fundamental changes in behaviour and attitudes. This applies to both producers and consumers. For the wine industry in particular, such a change is a major challenge. An eip-agri research project is evaluating the introduction of a returnable glass system in the german wine industry as a key solution for increasing sustainability. Given the need for change associated with a returnable system, the project is theoretically grounded in systems innovation, as this approach provides solutions for complex, transformative change.

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.

Influence of ‘pinotage’ defoliation on fruit and wine quality

Among the different management techniques in Viticulture, which have
been developed with the purpose of optimizing the interception of sunlight, the photosynthetic capacity of
the plant and the microclimate of the clusters, especially in varieties that show excess vigor, the management of defoliation presents great importance. The defoliation consists of the removal of leaves that cover or that are in direct contact with the curls, which can cause physical damages in the berries, and aims to balance the relation between part area and number of fruits, providing the aeration and insolation in the interior of the vineyard, as well as reduce the incidence of rot in order to achieve greater efficiency in phytosanitary treatments and quality musts.

Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

The mapping of spatial variability in vineyards offers the potential to implement zonal management strategies with the aim to optimize economic benefits and increase sustainability by managing natural resources, such as water used for irrigation, more optimally. This study characterized the (natural) variability in plant water status in a commercial Cabernet Sauvignon block, using remote sensing techniques, and identified the impact of this variability on the yield, and juice and wine composition. From the field data collected over two growing seasons, we demonstrated that remote sensing techniques are a practical and powerful tool for mapping spatial variability within vineyard blocks.