Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA


Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.

Methods and Results: Work was conducted during two consecutive seasons in a ~40ha (100ac) premium wine estate located in the Adelaida District AVA of Paso Robles, CA, USA. The vineyard topography was very diverse, with a large variation in slope grade (0-30%) and exposure (0-359). One hundred experimental units were identified by a maximum dissimilarity sampling algorithm based on environmental attributes derived from a digital elevation model and a soil map. Reflecting the estate varietal distribution, ~70% were Cabernet-Sauvignon units, 20% Cabernet-Franc, and 10% Petit-Verdot units grafted on 1103P or 420A (~50-50%). Grapevine water status was monitored by weekly measurements of stem water potentials, Ψstem, and analysis of carbon isotope discrimination of grape musts, δ13C, at harvest. The grape composition during ripening was assessed by measuring total soluble solids, titratable acidity, and pH of musts and by a comprehensive assessment of skin phenolic composition with HPLC-DAD. Additional field measurements included shoot-count and yield assessment. Vegetation indexes were derived from canopy reflectance obtained from ~3m resolution CubeSat satellites. Irrigation amounts were provided by the grower, and weather data were obtained from three on-site stations. 

Grapevine Ψstem was modelled from weather data (temperature, relative humidity, rainfall), irrigation amounts, vegetation indexes, topographic attributes, soil type using a gradient-boosting-machine algorithm. The model was able to predict plant water status with <0.1 MPa of error (estimated as root mean squared error in a cross-validation procedure). Significant differences in water status were observed between rootstocks and main environmental drivers were slope grade and aspect (i.e. exposure). External validation of the model was carried out by correlating predictions with δ13C. The model allowed obtaining high-resolution daily mapping of Ψstem at the estate scale. Time-series of grapevine Ψstem were significantly correlated with the content of total soluble solids of musts, grape anthocyanin amounts, and the ratio of tri-hydroxylated to di-hydroxylated compounds at harvest and mapped. Spatial-clustering of grape anthocyanin composition was obtained from Ψstem model-estimates and used to guide harvest selectively. 


Grapevine water status confirmed to be an important driver in the variability of grape composition, even though the vineyard was irrigated. Variability in water status was related to environmental attributes (slope, aspect, incoming radiation) and the machine-learning approach proved to be useful to predict and understand plant-environment interactions and effects on grape composition in a varied and large dataset.

Significance and Impact of the Study: Vineyards are often located on slopes and accurate modelling of grapevine water status in hillslope conditions is a challenging task. This research demonstrates for the first time that it is possible to obtain daily estimates of grapevine water status at the estate scale by re-elaborating routine measurements with machine-learning technologies. This information can be used to drive selective harvest decisions and clustering within-vineyard variability at the estate scale to easily implement selective harvest decisions.


Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video


Luca Brillante

California State University Fresno, Fresno, United States

Contact the author


Grapevine water status, machine learning, phenolic composition


IVES Conference Series | Terroir 2020


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.