Terroir 1996 banner
IVES 9 IVES Conference Series 9 La Région Délimitée du Douro et le Vin de Porto — un terroir historique —

La Région Délimitée du Douro et le Vin de Porto — un terroir historique —

Abstract

La viticulture de la Région Délimitée du Douro, une des héritières de la viticulture ancestrale, traditionnellement empirique et de qualité, tout en intégrant la modernité et les outils contemporains, respecte et a toujours présent les principes sur lesquels elle s’est développé.

Commes les a très bien définit M.Champagnol :
1. La nécessité de réserver les meilleures terres pour les céréales destinés à la nourriture humaine ;
2. La production de moûts riches en sucre afin de contourner le problème de la mauvaise conservation des vins peu alcoolisés ;
3. Les petits récipients vinaires qui imposaient une vinification en petit volume, et qui ont permis d’établir des corrélations entre les parcelles et le vin,
sont quelques facteurs qui ont orienté cette viticulture vers un objectif de qualité.
Ce chemin de la qualité – qui conceme l’authenticité du vin et, Évidemment, la garantie donnée au consommateur, qui est le dernier juge de la qualité -, est un long chemin que l’on poursuit depuis presque 300 ans dans la Région Délimité du Douro.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type: Poster

Authors

F. BIANCHI DE AGUIAR, A. LIMPO DE FARIA, J. DIAS

INSTITUTO DO VINHO DO PORTO
Rua Ferreira Borges. 4050 PORTO • PORTUGAL

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Malolactic fermentation in wine production

What influence do these bacteria have on wines? What new bacteria are being studied to carry out this fermentation? Find below articles about malolactic fermentation published in our 3 media (OENO One, IVES Technical Reviews and IVES Conference Series). OENO One...

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.

Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Plant water stress affects grape (Vitis vinifera L.) berry composition and is variable in space due to variations in the physical environment at the growing site. Could we use water status maps as a sensitive tool to discriminate between harvest zones?

Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

The potassium (K) supply characteristics and clay mineralogies of a population of Western Cape soils were investigated to determine their potential effects on vine K uptake and wine quality. The total K contents of granite-, shale- and sandstone-derived soils varied, averaging 33.7, 26.1 and 4.5 cmol(+)/kg, respectively. Corresponding M NH4Cl exchangeable soil K levels were: 0.172, 0.042 and 0.035 cmol/kg.