Terroir 1996 banner
IVES 9 IVES Conference Series 9 Les terroirs viticoles ont une histoire

Les terroirs viticoles ont une histoire

Abstract

L’historien repart d’une définition scientifique, rigoureuse et récente du terroir viticole. “Un terroir viticole est composé de plusieurs unités homogènes : éléments géologiques et pédologiques (texture, granulométrie, épaisseur, nature minéralogique, composants chimiques), géomorphologiques (altitude, pente, exposition), climatologiques (pluviométrie, température, insolation)”. Absent de cette définition, l’homme est heureusement réintroduit un peu plus loin. En associant la viticulture et la vinification, il forme un “couple” avec le terroir et ce couple. L’historien se propose de réexaminer les relations de ce tout au long de deux millénaires d’histoire. Il veut montrer que le choix de localisation des vignes, celui des cépages et celui des techniques de viticulture ne furent pas ou peu guidés, jusqu’à une période récente, par des qualités ou des virtualités objectivement reconnues à des terroirs précis. Des contraintes et des motivations extérieures au milieu physique ont été beaucoup plus déterminantes. Elles furent économiques, tout particulièrement commerciales, mais aussi politiques, juridiques, sociales, voire culturelles.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

G. GARRIER

Université Lumière Lyon II Centre d’Histoire Pierre Léon
14, avenue Berthelot 69363 Lyon Cedex 07

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Impact of agrivoltaics on berry ripening: preliminary results for the white cv. Viosinho

Climate change poses significant challenges for viticulture, particularly in Mediterranean regions like Portugal, where extreme heat and drought conditions are becoming more frequent.

Landscapes of Vines and Wines Patrimony – Stakes – Valorisation

The interaction between wine and landscapes is of an unsuspected richness. On the one side, the vineyards form part of the landscapes which they model. On the other side, the wines are related in their perception to the image of a region, a landscape and are at the origin of a cultural richness.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Since the 18th century, sulfur dioxide (SO2) is used in winemaking. Added at different steps, its antimicrobial but also antioxidasic and antioxidant properties are very helpful for winemakers. Nevertheless sulfur dioxide has a real potential health impact, particularly for sensitive consumers often highlighted by hygienists. Nowadays, a serious trend for “natural” wines (i.e. produced without any additives), as described by their producers, could be observed on the French market what match with a proliferation of wines elaborated without any sulfite addition. 

Assyrtiko wines of Santorini produced by different autochthonous yeasts: Differences in aromatic and organoleptic profiles

Different yeasts were isolated from spontaneous fermentation of Assyrtiko grape must in Santorini Island, Greece. Molecular typing revealed the presence of three Saccharomyces cerevisiae strains (S9, S13, S24) and one strain of the yeast species Nakazawaea ishiwadae (N.i). The four isolated strains were further tested in laboratory scale fermentations of Assyrtiko must in pure inoculation cultures and in sequential inoculation (72 hours) of each S. cerevisiae strain with the strain of N. ishiwadae. All fermentation trials were realised in duplicate.