Terroir 1996 banner
IVES 9 IVES Conference Series 9 Les terroirs viticoles ont une histoire

Les terroirs viticoles ont une histoire

Abstract

L’historien repart d’une définition scientifique, rigoureuse et récente du terroir viticole. “Un terroir viticole est composé de plusieurs unités homogènes : éléments géologiques et pédologiques (texture, granulométrie, épaisseur, nature minéralogique, composants chimiques), géomorphologiques (altitude, pente, exposition), climatologiques (pluviométrie, température, insolation)”. Absent de cette définition, l’homme est heureusement réintroduit un peu plus loin. En associant la viticulture et la vinification, il forme un “couple” avec le terroir et ce couple. L’historien se propose de réexaminer les relations de ce tout au long de deux millénaires d’histoire. Il veut montrer que le choix de localisation des vignes, celui des cépages et celui des techniques de viticulture ne furent pas ou peu guidés, jusqu’à une période récente, par des qualités ou des virtualités objectivement reconnues à des terroirs précis. Des contraintes et des motivations extérieures au milieu physique ont été beaucoup plus déterminantes. Elles furent économiques, tout particulièrement commerciales, mais aussi politiques, juridiques, sociales, voire culturelles.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

G. GARRIER

Université Lumière Lyon II Centre d’Histoire Pierre Léon
14, avenue Berthelot 69363 Lyon Cedex 07

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

Recovery of olfactory capacity following a COVID-19 infection

In this video recording of the IVES science meeting 2021, Sophie Tempère (Institut des Sciences de la Vigne et du Vin – ISVV, Université de Bordeaux) speaks about the recovery of olfactory capacity following a COVID-19 infection. This presentation is based on an original article accessible for free on IVES Technical Reviews.